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Abstract
The use of association rule mining techniques in diverse contexts and domains has resulted in
the creation of numerous interestingness measures. This, in turn, has motivated researchers
to come up with various classification schemes for these measures. One popular approach to
classify the objective measures is to assess the set of mathematical properties they satisfy in
order to help practitioners select the right measure for a given problem. In this research, we
discuss the insufficiency of the existing properties in the literature to capture certain behaviors
of interestingness measures. This motivates us to adopt an approach where a measure is
described by how it varies if there is a unit change in the frequency count ( f11, f10, f01, f00),
at different preexisting states of the counts. This rate of change analysis is formally defined
as the first partial derivative of the measure with respect to the various frequency counts.
We use this analysis to define two novel properties, unit-null asymptotic invariance (UNAI)
and unit-null zero rate (UNZR). UNAI looks at the asymptotic effect of adding frequency
patterns, while UNZR looks at the initial effect of adding frequency patterns when they do not
preexist in the dataset. We present a comprehensive analysis of 50 interestingness measures
and classify them in accordance with the two properties. We also present multiple empirical
studies, involving both synthetic and real-world datasets, which are used to cluster various
measures according to the rule ranking patterns of the measures. The study concludes with
the observation that classification of measures using the empirical clusters shares significant
similarities to the classification of measures done through the properties presented in this
research.

Keywords Association rule mining · Objective measures · Properties of measures · Rate of
change analysis

1 Introduction

Association rule mining (ARM) has emerged as a powerful and specialized tool to identify
patterns in large datasets. It can be used in applications or business operationswhere instances
of some occurrence, typical spatial or temporal, are represented in tabular format across a
set of common attributes. An ARM study results in rules of the form A ⇒ B, which would
mean that based on evidence from the data, the presence of itemset A is likely to indicate
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Table 1 Standard 2 × 2
contingency table representing
the frequency counts of A and B

B Bc

A f11 f10
Ac f01 f00

the presence of itemset B. There are two major challenges to an ARM implementation: (i)
Candidate generation: This involves the process of filtering all the possible combinations of
items that satisfy a given condition for selection. Given the exponentially large possibilities of
rules, this condition focuses on the use of frequency-based thresholds to remove potentially
uninteresting rules [1]. The secondmajor challenge is (ii) Candidate evaluation: This involves
the use of an appropriate metric (interestingness measure) to evaluate all the different rules
that can be defined from the selected itemsets [7,19].

While several works have dealt with the first challenge [1,14,16,21,26,27], this research
concerns itself with the latter challenge. Candidate evaluation can be challenging because
there are different ways of describing interestingness of rules. A recent study [22] showed
that even among objective measures, there exist more than 61 that are defined in the literature
[1,15,17,21,22]. Also, the information derived from these different interestingness measures
(IM) may not always be consistent [19].

The properties are typically defined using a contingency table (see Table 1), a simplified
adaptation from [19]. Here, two states, present and absent, are defined for two itemsets, A
(rows) and B (columns). The frequency counts f11 and f00 define the co-presence and co-
absence of A and B, respectively. While the term f10 would represent the presence of A and
absence of B, f01 the opposite.

In this research, we posit that the popularly used set of 8 properties covered in [20] do not
fully capture some important aspects of interestingness measures, and this motivates us to
define a more relevant and new property-based analysis of IMs. Specifically, our motivation
is built on the observations of [22], who state that the empirical classification of measures
based on how they rank rules has little to do with the property-based classification. A deeper
study on this mismatch leads us to believe that preexisting mathematical properties are only
useful in specific environmental contexts. These observations lead us to devise simpler, more
generic property definitions which can be applied to different environmental contexts and
bear a stronger affiliation to rule ranking patterns exhibited by the measures on empirical
datasets. The major contributions of this research are listed as follows:

• Introduction of two novel properties to classify interestingness measures, UNAI and
UNZR, based on the rate of change analysis (RCA) approach. Note that we do not attempt
to define a new interestingness measure. Our objective is to meaningfully classify the
existing measures to facilitate an appropriate selection of a measure for a given problem.

• An in-depth analysis of the performance of these properties in classifying wide set of
popular interestingnessmeasures, aswell as a comparisonwith other properties presented
in [19].

• Presenting empirical case studies that provide validation for the findings and also demon-
strate the usefulness of the properties using real-world and synthetic datasets.

1.1 An illustrative example for the intuition behind the properties UNAI and UNZR

While we formally introduce the properties in Sect. 3, here we provide a jargon-free motiva-
tion for our approach through a simple example. Most of the current properties are defined
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Table 2 Contingency tables for different scenarios

Table Probabilities Measure

f11 f10 f01 f00 P(A) P(B) Cosine Lift PS

Sparse

S1 1 100 100 10,000 0.010 0.010 0.01 1.00 0.000

S2 1 100 100 11,000 0.009 0.009 0.01 1.10 0.000

S3 1 100 100 12,000 0.008 0.008 0.01 1.20 0.000

Dense

D1 10,000 100 100 1 0.99 0.99 0.99 1.00 0.000

D2 10,000 100 100 1001 0.90 0.90 0.99 1.10 0.080

D3 10,000 100 100 2001 0.83 0.83 0.99 1.20 0.134

on the basis of how the IMs change when fi j s are increased or decreased, with respect to
each other. The idea being that similar behavior on perturbing the fi j count suggests that the
IMs possess similar properties. However, the properties in extant literature do not account
for the preexisting states of fi j s when the perturbations are made, whereas UNAI and UNZR
(the two properties presented in this study) achieve this.

Lets us take the example of two environments. One is a sparse matrix which is typical
in a point-of-sale system often discussed in the market basket analysis. Here, the system is
marked by pairs of itemsets with high f00 count compared to f11, implying co-absence is
more likely than co-presence. Second, we take a dense matrix, which could occur in cases
where the attributes are easily possessed by the instances. This is common when the number
of attributes is small. Here, the system is marked by high f11 count compared to f00. In
both these environments, we explore the effect of increasing f00 in two steps. The effect of
these increases in both environments on three popular measures–Cosine [18], Lift [5] and
Piatetsky-Shapiro (PS) [15]—is captured in Table 2. The base case and the two increases in
the sparse setting are shown as S1, S2 and S3, with equivalents for the dense case.

It can be seen that Cosine and PS behave similarly in the sparse setting, whereas the Lift
and PS behave similarly in the dense setting. No preexisting property captures this binning.
We can see that a common property, null invariance [19], which captures whether a measure
is invariant in co-absence of items, can be used to discern between Cosine and the other two
measures. While this could be useful in the dense environment, it is misleading in the sparse
environment. In the subsequent sections, and Table 3 in particular, we demonstrate that the
property UN AI f00 captures the difference between Lift and the other two measures that
we see in the sparse environment, while UN ZR f00 classifies all three measures differently
(while both Lift and PS change with the increase in density levels, their rate of the change
is significantly different and therefore all three measures should be classified separately),
which reflects the difference we seen in the dense environment.

The property unit-null asymptotic invariance (UN AI ) studies the effect that an increase
of a frequency count fi j has on a measure when the frequency count is already very large
(asymptotic effect as the frequency count tends to +∞). The property unit-null zero rate
(UN ZR) looks at the effect of increasing the frequency count on the IM when it is currently
nonexistent in the dataset (effect when the frequency count is or tends to 0).

The rest of this document is structured as follows: Sect. 2 presents a brief overview of
the literature in interestingness measures and properties used in ARM. Section 3 formally
defines the mathematical requirements for UNAI and UNZR and also presents the different
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states that these two properties can take. In Sect. 4, we analyze a set of 50 IMs and compare
our properties with 8 other properties. In Sect. 5, we present empirical studies on synthetic
and real datasets. We finally summarize and conclude the study in Sect. 6.

2 Related work

Given the abundance of measures and difficulty in choosing the appropriate IM, researchers
have suggested various classification schemes (of the IMs) to help identify the appropriate
measure for a given application [6,15,19,20,22]. There are two different types of classification
that exist in the literature: classification based on the properties of IMs (e.g., [6,15,19,20])
and classification based on empirical results of IMs on different datasets (e.g., [22]).

Research conducted by [15] formalized a framework consisting of three properties that an
IM should satisfy, namely: it must take value 0 if the occurrences of itemsets are independent
(P1); the measure must be monotonically increasing with the co-presence of itemsets (P2);
and the measure should be monotonically decreasing with the occurrences of either itemsets
(P3).

The authors in [19] proposed the following 5 properties in addition to the 3 proposed by
[15]: symmetry under variable permutation (O1), row/column scaling invariance (O2), anti-
symmetry under row/column permutation (O3), inversion invariance (O4) and null invariance
(O5). They conducted a comparative study, testing 21 different IMs against the resulting 8
properties. The authors further proposed that the optimal way of finding a suitable IM would
be to let the user define a property vector indicating the properties that would be ideally
required for the given application. This property vector would then be compared to the
property vectors of the different objective measure to pick out the ideal IM for that particular
case. For instance, the null-invariance property is considered to be important for IMs used in
the context of small probability events in a large dataset [25]. While there has been further
work in introducing new properties (e.g., [2,4–6,8,11]), these have not been as commonly
used or cited as the work of [15,19]. The use of partial derivatives of frequency counts to
understand the behavior of IMs is proposed in the literature [10,12,23]. These properties
look at the impact on IM with the addition of counterexamples to rules. The first property is
satisfied if IMs should be decreasing functions of the number of counterexamples of the rules,
while the second property, and the more rigorous one, addresses the shape of the IM curve
when the first counterexamples appear. The properties presented in [11] also categorize IMs
based on their sensitivity to marginal frequency counts of counterexamples. These results are
used to propose a multi-criteria aid approach assessing the issue of selecting an IM adapted
to the users context.

We provide a significant extension of these properties in our paper. The properties pre-
sented in this paper provide a more detailed assessment of the behavior of IMs with respect
to changes to as they differentiate between the types of counterexamples and behavior of IM
at very low frequency counts.

In comparison with property-based classifications, there has been limited work on classi-
fication of IMs based on empirical results from different datasets. Research by [9] proposed
the classification of 35 IMs based on their empirical performance on 2 different datasets
by studying the correlation of IMs. These were classified using a graph-based clustering
approach to create high-correlation and low-correlation graphs.

The work of [22] performed a comprehensive classification of 61 different objective IMs
based on empirical results with 110 datasets. It suggested that there exist 21 clusters of
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measures which are distinct and each of these were studied in detail. The work by [13,24]
follows a similar approach to this paper, where 20 IMs are empirically classified using 8
different properties across 10 data-sets. The study identifies three main groups of IMs in the
two approaches, which may be refined in five smaller classes.

3 Mathematical definitions for properties UNAI and UNZR

An interestingness measure (IM) can be represented as a function of the frequency counts
(see Eq. 1). RCA analysis seeks to assess the relative change in the interestingness measure
per unit change of the frequency counts. This is essentially the first partial derivative of
the interestingness measure with respect to the variables representing the counts, as shown
in Eq. 2. The set of formulas representing the first partial derivative of the interestingness
measure with respect to each of the four state variables f11, f00, f10 and f01 represents the
RCA analysis as shown in Eq. 3.

IM = φ( f11, f10, f01, f00) (1)

φ
′
fi j = ∂(IM)

∂ fi j
(2)

RCA (IM) =
{
φ

′
f11 , φ

′
f10 , φ

′
f01 , φ

′
f00

}
(3)

UNAIi j = lim
fi j−→+∞(φ

′
fi j ) (4)

UNZRi j = lim
fi j−→0

(φ
′
fi j ) (5)

We use the RCA analysis to define two novel properties: the unit-null asymptotic invari-
ance (UNAI) and the unit-null zero rate (UNZR). Mathematically, both these properties are
the derivative at a point or the instantaneous rate of change, at two specific points. We can
define the property unit-null asymptotic invariance (UNAI) as the derivative of the inter-
estingness measure (IM) with respect to fi j as fi j → ∞, and this instantaneous rate of
change can be written as shown in Eq. 4. UNAI can be defined for each of the four frequency
count variables by substituting i j with the count of interest. Similar to UNAI, UNZR can
be captured by looking at the instantaneous rate of change at 0. Formally, this would be the
derivative of the interestingness measure (IM) with respect to fi j as fi j → 0, and this instan-
taneous rate of change can be written as shown in Eq. 5. To compute, UNAIs and UNZRs, in
some cases we can simply take the first partial derivative and directly substitute the point of
interest and in other scenarios, we use the limit notation for derivative at a point (also shown
in Eqs. 4 and 5). Having defined the framework for computing the satisfaction of UNAIs
and UNZRs, in the subsequent sections we define the conditions where an interestingness
measure can be said to satisfy these properties. These sections present a classification scheme
for the properties UNAI and UNZR which are presented at the individual fi j level as well as
the metric as a whole.

3.1 UNAI property definition

We create a two-pronged classification scheme for UNAI. We define UN AI fi j which is
UN AI defined for each frequency count ( f11, f10, f01, f00). We do this explicitly for f11
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which can then be extended to the other frequency counts. The intuition behind these defini-
tions is discussed in 1.1.

1. UN AI f11 is satisfied when: lim f11→+∞(φ
′
f11

) = 0, for all feasible combination of values
of f00, f10, and f01. We define a feasible combination of values as ones which enable the
calculation of the metric in deterministic forms for a database with nonzero rows.
By extension, we can say that theUN AI f11 condition is not met when lim f11→+∞(φ

′
f11

)

�= 0, for any feasible combination of values of f00, f10, and f01.
Similarly, we can define UN AI fi j for the other three frequency counts by swapping the
variables accordingly.

2. UN AI is satisfied when UN AI fi j is satisfied ∀(i j). This is essentially an extension of
the classification from UN AI fi j to a general property for the metric as a whole.

In our example in Sect. 1.1, the UN AI f 00 would have been satisfied for Cosine and
PS, whereas it would have not been satisfied for Lift. This would have been the useful
classification in the sparse setting.

3.2 UNZR property definition

The classification schemewe adopt for UNZR ismore complex thanUNAI. Similar to UNAI,
we adopt a two-pronged approach of defining UN ZR at the fi j level as well as a defining
it for the metric as a whole. However, we differ from UN AI in that UN ZR states are not
binary, but have three states that correspond to the property being satisfied, partially satisfied
and not satisfied. Another aspect of the difference is that the definitions at the fi j level are
different for { f11, f00} and { f10, f01}. As shown below, they are symmetrical opposites in
terms of the inequality conditions. We formally defined the property for f11 and f10 below
and extend it to the other frequency counts f00 and f01, respectively. The intuition behind
these definitions is discussed in 1.1.

1. UN ZR f11 is satisfied when lim f11→0(φ
′
f11

) > 0 for all feasible combinations of
f00, f10, and f01. Again, a feasible combination is one that enables the computation of
the metric in deterministic forms. This formulation can be extended to UN ZR f00 by
swapping the variables accordingly.
UN ZR f10 is satisfied when lim f10→0(φ

′
f10

) < 0 for all feasible combinations of
f11, f00, and f01. This formulation can be extended to UN ZR f01 by swapping the vari-
ables accordingly.

2. UN ZR f11 is partially satisfiedwhen twoconditions aremet. These are: (i) lim f11→0(φ
′
f11

)

≥ 0 for all feasible combinations of f00, f10, and f01, and (ii) lim f11→0(φ
′
f11

) > 0 for
at least one or more feasible combinations of f00, f10, and f01. This formulation can be
extended to UN ZR f00 by swapping the variables accordingly.
Similarly, UN ZR f10 is partially satisfied when two conditions are met. These are:
(i) lim f10→0(φ

′
f10

) ≤ 0 for all feasible combinations of f11, f00, and f01, and (ii)

lim f10→0(φ
′
f10

) < 0 for at least one or more feasible combinations of f11, f00, and f01.
This formulation can be extended to UN ZR f01 by swapping the variables accordingly.

3. Finally, by extension, we can say that UN ZR f11 is not satisfied when either of
these two conditions are met: (i) lim f11→0(φ

′
f11

) < 0 for any feasible combina-

tion of f00, f10, and f01 or, (ii) lim f11→0(φ
′
f11

) = 0 for all feasible combinations of
f00, f10, and f01. This formulation can be extended to UN ZR f00 by swapping the vari-
ables accordingly.
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Similarly, we can say thatUN ZR f10 is not satisfied when either of these two conditions
are met: (i) lim f10→0(φ

′
f10

) > 0 for any feasible combination of f11, f00, and f01 or, (ii)

lim f10→0(φ
′
f10

) = 0 for all feasible combinations of f11, f00, and f01. This formulation
can be extended to UN ZR f01 by swapping the variables accordingly.

4. At the overall metric level, we say that UN ZR property is satisfied for a metric if the
UN ZR fi j is satisfied ∀(i j) . We say that UNZR property is partially satisfied for a metric
if UN ZR fi j is at least partially satisfied for all fi j s. Finally, a metric fails to satisfy the
UNZR property if one or more UN ZR fi j s do not satisfy the property.

In our example in Sect. 1.1, the UN ZR f 00 would have been fully satisfied for PS, partially
satisfied for Lift, and not been satisfied for Cosine. This is a meaningful classification for the
dense setting, since PS changes at a significant rate (given that the range for this measure is
− 0.25 to + 0.25), whereas Lift reflects smaller increases, and Cosine is unaffected.

4 Mapping UNAI and UNZR to commonly usedmeasures and other
properties

This section is divided in two parts. The first part performs a detailed analysis that uses the
proposed properties to classify commonly used measures. The second part then compares
these classifications to the classification done by other popular properties in the literature
[20]. This twofold approach is used because it is important to show that a property can
actually differentiate between measures (Sect. 4.1), and that it classifies measures in a way
that is different from other properties (Sect. 4.2).

4.1 Classification of existingmeasures using UNAI and UNZR

In this section, we classify 50 common measures across the two properties UN AI and
UN ZR, at both the fi j level as well as the metric level. We use all 21 metrics from [20] and
also borrow popular metrics from [22]. We consciously avoid metrics which are mathemati-
cally identical as suggested by [22], but choose to havemetrics which could still be rank-wise
indistinguishable. We do this because practitioners might make sense of an absolute score
and the rate at which it increases or decreases. We also avoid metrics which need us to make
any a priori assumptions on probability distributions or cannot be abstracted as a function of
fi j s. The analysis is carried out in accordance with the definitions in Sect. 3, and findings
are summarized in Table 3.

The results on the classification of these measures provide two important insights. First,
that UN AI property for the metrics as a whole is satisfied by a majority of the measures
(37 of the 50). These numbers are even higher for the individual UN AI fi j (ranging from
45 for f11, 44 for f00, 46 for f10 and 45 for f01 out of the 50 measures). This suggests that
UNAI would be less useful as a tool to eliminate measures that nullify the unstable effect of
one frequency count being particularly large. Instead, this property can be useful when due
importance needs to be given when a frequency count is expected to be high and continues
to grow. A classic scenario would be Lift. In certain contexts, an increase in co-absence in a
sparse database should continue to increase the metric value since it makes co-presence even
less probabilistic through random chance.
The second insight from the case of UN ZR is of a different nature. At the overall metric
level, there are only 3 measures that fully satisfy the UNZR property: They are Novelty,
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Piatetsky-Shapiro and Collective Strength. Of the remaining, 14 measures partially satisfy
the property and 33 fail to satisfy the property. For each fi j , the UNZR measures are more
discerning. In the case of f11, 25 satisfy the property, 9 for f00, 22 for f10 and 15 for f01.
These suggest that UNZR at the fi j level could be more meaningfully used to pick metrics,
especially for the case of f00, which is satisfied by only nine measures. A particular case
could be when the practitioner expects an fi j to be low or close to zero and would like to see
the metric impacted when presented with evidence of it. The use of UN ZR at the overall
metric level could also be useful if the practitioner suspects that any of the frequency values
can be close to zero but would like to see its presence or absence to have a meaningful impact
on the metric.

4.2 Comparing the UNAI and UNZRmapping with other properties

In this section, we compare the classification of measures done throughUN ZR andUN AI ,
with the classification done through other properties in the literature [20]. This is important
because, in addition to fulfilling other criteria, it is necessary that a property classifies mea-
sures differently from other preexisting properties. Otherwise, there is a redundancy, and one
could question the need for the new property in question. We conduct our comparison on the
properties proposed by [20]. This includes five new properties proposed in that study, as well
as three previous properties from [15]. In order to perform the analysis, we take all the 50
measures analyzed in Table 3 which include the 21 measures analyzed by [20]. We conduct
an analysis that compares the classification of these measures across the two states ofUN AI
and three states of UN ZR and compare it to the two states (satisfied or not satisfied) across
the 8 properties presented in [20]. This leads us to create the contingency Table 4.

The findings from Table 4 suggest that the classification of measures through UN AI
and UN ZR is more or less independent of the classification done through all of the eight
preexisting properties. The few caseswherewe see lowoverlaps are also easily explainable by
the lowmembership to a certain class and not a relationship between properties (for instance,
observe that only 3 of the 50 measures satisfy the ‘row and column scaling invariance’ or
fully satisfy UNZR).

5 Empirical studies

The work of [22] has established that empirical clustering of measures bears no meaning-
ful relationship to properties presented in [20] (which also cover three properties originally
presented in [15]). While the properties UNAI and UNZR have been constructed to intu-
itively convey a certain mathematical aspect of the measure, an important motivation and
therefore requirement in design were that they have a meaningful map to the actual behavior
of measures, empirically. Our studies across a wide range of datasets, both synthetic and
real, suggest that these two properties bear strong relationships with the empirical clusters.
More interestingly, we find that the results are substantially more pronounced in certain
environmental conditions. Specifically, we find that UN ZR f11 and UN AI f00 are valuable
in sparse datasets, and correspondingly, UN ZR f00 and UN AI f11 are better properties to
consider in dense data. In the following sections, we do an illustrative analysis showing how
theUN ZR f11 classification of measures is useful in sparse datasets andUN ZR f00 is useful
in dense datasets. The motivation to choose theUN ZR properties over theUN AI is the fact
that theUN ZR creates groups of more or less equal sizes. For instance,UN ZR f11 splits the
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measures with 25 of them satisfying the property, 15 of them partially satisfying it, and 10 of
them failing to satisfy the property, whereas withUN AI f00 we see that 44 of the 50 measures
satisfy this property. A similar comparison exists between UN ZR f00 and UN AI f11 .

We conduct our empirical studies by first considering synthetic contingency tables that
mimic sparse and dense datasets, and we explore further by choosing 8 real-world datasets to
validate our findings.We choose 4 of these datasets with a high number of sparse columns and
extract these for analysis in the sparse setting. Similarly, the remaining 4 are used for the dense
analysis. Based on the rule ranking of the measures in the two environmental conditions, we
then cluster the measures into sets and see how they correlate with the property of interest.
The entire analysis works with 50 measures obtained from the literature, and no newmeasure
is introduced.

5.1 Sparse datasets

Sparse datasets are characterized by having a relatively high f00 count with respect to f11,
primarily, and to a lesser extent f10, and f01. As discussed in the previous section, we choose
to analyze the effect of the UN ZR f11 property in this setting.

We mimic the rules from a synthetic dataset using artificially created sets of rules in
form of contingency tables. We do this specifically for the sparse settings. We achieve these
environments by assigning low values to f11, high values for f00, while f10, f01 fall in
between the two extremes. The f11, f00, f10 and f01 cells of the tables took the values {0,
1, 10, 11}, {1000, 5000, 10,000, 25,000, 50,000, 75,000, 100,000}, {10, 100, 250, 500, 600,
800, 1000} and {10, 100, 250, 500, 600, 800, 1000}, respectively. This resulted in 1372
unique contingency tables, each representing a rule in a sparse dataset.

For the real-world dataset, we chose the fairly popular datasets such as ‘Adult,’ ‘Breast
Cancer (wisconsin),’ ‘Glass Classification’ and ‘Chess(King Rook vs King Pawn)’ from the
UCI Machine Learning archive [3].

A detailed discretization and binarization of variables were carried out in conformance
to the best practices suggested in [21]. These help us create the transactional tables for each
dataset. We confine the analysis to one-to-one rules. We use a basic support-based pruning
with a threshold close to 0, in order to get a full enumeration of all one-to-one rules but avoid
a variable mapping to itself.

Similar to [22], we choose a subset of the rules to compare. However, given the unique
nature of our problem, unlike [22], we do not randomly select the rules. Instead, we choose
a subset of rules that are typically encountered in sparse datasets, by selecting top 10% of
rules with the highest f00

f11
, and capping this to 5000 in large datasets.

In the next steps, we follow the same procedure as [22]. Each rule is evaluated using
each measure, and a rank ordering of rules is done for each measure. Using Spearman’s rank
correlation, we create a matrix of pairwise similarities between measures which acts as the
adjacency matrix for a complete graph. We perform hierarchical agglomerative clustering
on the measures using the similarities. This process naturally creates groups of measures.
We explore clusters of size 2, 3 and 4 and showcase the formation that points to the most
meaningful results. While there are various other graph clustering algorithms that can be
implemented, the simplicity of this approach is appealing.

Our study finds that there is a significant match between the three property states and the
clusters that are formed for both the synthetic and real datasets. We split the measures into
clusters as described above. The cluster memberships can be found in “Appendix.”
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Table 5 Empirical analysis—sparse dataset

Dataset UNZR f11 Synthetic Adult Breast cancer Kr versus KP Glass

A B C A B A B C A B A B C D

Total 50 21 20 9 36 14 6 40 4 46 4 4 13 4 19

N 10 0 4 6 2 8 3 3 4 6 4 2 0 4 4

P 15 4 9 2 12 3 1 14 0 15 0 1 2 0 12

Y 25 17 7 1 22 3 2 23 0 25 0 1 11 0 13

ARI 0.22 0.21 0.19 0.12 0.11

ARIP+Y 0.18 0.42 0.51 0.43 0.18

Table 6 Empirical analysis—dense dataset

Dataset UNZR f00 Synthetic Mushroom Spambase Soybean Lung cancer

A B C A B C D A B C A B C D A B C D

Total 50 24 19 7 23 12 12 3 22 4 24 3 17 28 2 3 19 4 24

N 23 3 15 6 2 7 11 3 17 4 2 1 15 6 1 2 15 4 2

P 18 14 2 3 15 3 0 0 2 0 16 0 1 16 1 1 1 0 16

Y 9 6 1 0 6 2 1 0 3 0 6 2 1 6 0 0 3 0 6

ARI 0.22 0.23 0.33 0.24 0.30

ARIP+Y 0.39 0.36 0.43 0.32 0.41

The relationship between empirical cluster memberships and property affiliations is sum-
marized in Table 5. We summarize the cluster relationships with the Adjusted Rand index
(ARI) for the three states. We also present ARIP+Y where the partial and complete confor-
mance to the property is grouped as a single class. In certain environments, this shows
promising results. In the synthetic dataset, all of the 21 measures of cluster A satisfy
UN ZR f11 , either completely of partially. The split is rather more even in cluster B, but
cluster C is dominated by measures which do not satisfy UN ZR f11 . In the ‘Adult’ dataset,
cluster A again overwhelmingly consists of measures which satisfy UN ZR f11 , either par-
tially or completely (34 out of 36), whereas the properties that do not satisfyUN ZR f11 tend
to exist more in cluster B. A similar distribution can be seen in the other datasets as well
where at least one cluster is a clear partition of measures that do not satisfy UN ZR f11 .

5.2 Dense datasets

We characterize dense dataset as one which has relatively higher f11 count compared to f00
count, primarily, and to a lesser extent f10, and f01. As discussed earlier, we choose to study
the effect of UN ZR f00 property in this environment. The motivation for using synthetic
tables is the same as in the sparse case, and the values are identical but inverted (between f11
and f00).

For the real-world dataset,we chose the following datasets: ‘Mushroom,’ ‘Soybean,’ ‘Lung
Cancer’ and the ‘Spambase’ from the UCI Machine Learning archive. The methodology of
rule generation was identical to that of the sparse real-world datasets, with the focus to create
rules from a dense environment.
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The results from this analysis are summarized in Table 6 along with ARI scores as in the
sparse setting. In the synthetic dataset, cluster A is populated by measures which satisfy the
UN ZR f00 (21 out of 24), either partially or completely. Clusters B (14 out of 19) and C
(6 out of 7) are dominated by measures that do not satisfy UN ZR f00 . In the ‘Mushroom’
dataset, cluster A again consisted of measures which satisfy UN ZR f00 , either partially or
completely (21 out of 23). Cluster B is split between the measures that satisfyUN ZR f00 and
measure that do not (7 N’s vs 3 P’s and 2 Y’s). ClustersC andD overwhelmingly consisted of
measures which do not satisfyUN ZR f00 , with only 1measure satisfying the property among
the 15 in both clusters combined. In similar fashion, we see clusters A and C of ‘Spambase’
dataset representing measures that negate and satisfyUN ZR f00 . In general, it is evident that
the clustering holds a clear mapping to the UN ZR f00 property for the selected rules in a
dense setting.

6 Conclusions and future work

This study presents two new properties, UNAI and UNZR, which are based on taking the
partial derivative of an IM with respect to a frequency count. UNAI corresponds to the
derivative at infinity and UNZR at zero. The study then showcases the classification of a
broad set of measures in accordance with these properties and also compares them to the
classification done by other properties in the literature. The classifications through these
properties are fairly independent of those done by other preexisting properties, suggesting
that something new is being captured. Finally, the study showcases the utility of classification
through the new properties by conducting empirical analyses on both synthetic and real-world
datasets, which relate the rule ranking behavior of the measures with two of the properties
proposed. The findings suggest that the rule ranking behavior holds a clear relationship to
the classification done by the property.

The promising results shown by these two new properties in aligning with empirical
behavior of measures could motivate further extensions in the development of properties that
build on this idea. One possible extension is to study the shape of the partial derivative curve
(linear, polynomial, etc). Finally, the authors in this study agree with the view put forth in
[22] that meaningful classification of measures needs to, also, be driven by similarity (or
dissimilarity) in rule ranking that can be seen on empirical datasets. We would like to extend
this argument by stating that the value of mathematical properties, derived from principled
arguments, can be benchmarked across-the-board in this fashion. (This study performs such
an analysis exclusively for the two properties proposed in this study.) This can also be
extended beyond interestingness measures in ARM. Binary classification metrics (some of
which are included in this analysis like accuracy, recall, etc.) can also be defined by the same
contingency table and could therefore lend themselves to a representation and segmentation
using a similar analysis.

Acknowledgements This work was supported by a funding from the Robert Bosch Center for Data Science
and Artificial Intelligence (RBC-DSAI) at IIT Madras.
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Appendix A

Illustrative example of the UNAI and UNZR framework using Lift

In this sections, we consider the behavior of the popular interestingness measure, Lift, under
the UNAI and UNZR properties defined in the previous section. Lift is defined as follows:

Lift(L) = P(A ∩ B)

P(A) · P(B)
= f11( f11 + f01 + f10 + f00)

( f10 + f11)( f01 + f11)
(6)

Differentiating w.r.t to f11 and simplifying, we get

∂(L)

∂ f11
= 2 f10 f11 f01 + f10 f01( f10 + f00 + f01) − f 211 f00

( f10 + f11)2( f01 + f11)2
(7)

We check the UNAI property for Lift by considering the derivative as f11 → ∞

L f11(∞) = lim
f11−→∞

∂L

∂ f11
= lim

f11−→∞
2 f10 f11 f01 + f10 f01( f10 + f00 + f01) − f 211 f00

( f10 + f11)2( f01 + f11)2

(8)

After algebraic simplification, we can say that the above function is equal to zero for all
feasible combinations of f00, f10 and f01. Hence, we can say that Lift satisfies UNAI with
respect to f11. Similarly, we check for UNAI property with respect to f00, f10, f01.

L f00(∞) = lim
f00−→∞

∂L

∂ f00
= f11

( f01 + f11)( f10 + f11)
(9)

L f10(∞) = lim
f10−→∞

∂L

∂ f10
= 0 (10)

L f01(∞) = lim
f01−→∞

∂L

∂ f01
= 0 (11)

Here, it is evident that this function is not equal to 0 for all possible values of f11, f10, f01.
Hence, we say that UN AI f00 is not satisfied but I w.r.t to UN AI f11 ,UN AI f01 ,UN AI f10 is
satisfied.

We check for the UNZR property for f11 by taking the partial derivative at f11 = 0, we
get,

L f11(0) = ∂L

∂ f11
| f11=0 = f10 + f00 + f01

f10 f01
(12)

Similarly, taking the derivative with respect to f00, f10, f01 at 0, we get

L f00(0) = ∂L

∂ f00

∣∣∣
f00=0

= f11
( f11 + f10)( f11 + f01)

(13)

L f10(0) = ∂L

∂ f10

∣∣∣
f10=0

= − ( f01 + f00)

( f11 + f01) f11
(14)

L f01(0) = ∂L

∂ f01

∣∣∣
f01=0

= − ( f10 + f00)

( f11 + f10) f11
(15)

We see that for all feasible combinations UN ZR f11 , UN ZR f10 and UN ZR f01 are sat-
isfied. However, UN ZR f00 is only partially satisfied. From Eq. 23, we can see that the
following conditions are met: (i) For all feasible combinations of f11, f10, f01, L f00(0) ≥ 0.
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This passes the definition of partial satisfaction for UNZR as defined in the paper. At the
same time, this does not fully satisfy the UN ZR f00 property since there are values where it
can be 0.1

Illustrative example of the UNAI and UNZR framework using Piatetsky-Shapiro

In this section, we consider the behavior of another popular interestingness measure,
Piatetsky-Shapiro (PS), under the UNAI and UNZR properties in the same way as in the
previous section. PS is defined as follows:

Piatetsky-Shapiro (PS) = N (P(A ∩ B) − P(A)P(B)) = f11 − ( f11 + f01)( f11 + f10)

f11 + f01 + f10 + f00
(16)

Differentiating w.r.t to f11 and simplifying, we get

∂(PS)

∂ f11
= ( f01 + f00)( f10 + f00)

( f11 + f01 + f10 + f00)2
(17)

We check the UNAI property for PS by considering the derivative as f11 → ∞

PS f11(∞) = lim
f11−→∞

∂PS

∂ f11
= lim

f11−→∞
( f01 + f00)( f10 + f00)

( f11 + f01 + f10 + f00)2
(18)

After algebraic simplification, we can say that the above function is equal to zero for all
feasible combinations of f00, f10 and f01. Hence, we can say that Piatetsky-Shapiro satisfies
UNAI with respect to f11. Similarly, we check for UNAI property with respect to f00, f10,
f01. Hence, we can say that Piatetsky-Shapiro satisfies UNAI with respect to f11. Similarly,
we check for UNAI property with respect to f00, f10, f01.

PS f00(∞) = lim
f00−→∞

∂PS

∂ f00
= 0 (19)

PS f10(∞) = lim
f10−→∞

∂PS

∂ f10
= 0 (20)

PS f01(∞) = lim
f01−→∞

∂PS

∂ f01
= 0 (21)

Since Piatetsky-Shapiro satisfies UN AI f11 ,UN AI f01 ,UN AI f10 and UN AI f00 , we say
it satisfied UN AI .

Now we check for the UNZR property for f11 by taking the partial derivative at f11 = 0,
we get,

PS f11(0) = ∂L

∂ f11
| f11=0 = ( f01 + f00)( f10 + f00)

( f01 + f10 + f00)2
(22)

Similarly, taking the derivative with respect to f00, f10, f01 at 0, we get

PS f00(0) = ∂PS

∂ f00
| f00=0 = ( f01 + f11)( f10 + f11)

( f11 + f01 + f10)2
(23)

PS f10(0) = ∂L

∂ f10
| f10=0 = − ( f11 + f01)( f01 + f00)

( f11 + f01 + f00)2
(24)

PS f01(0) = ∂PS

∂ f01
| f01=0 = − ( f11 + f10)( f10 + f00)

( f11 + f10 + f00)2
(25)

1 Substitute f11 = 0, while giving the others positive values.
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We see that for all feasible combinations UN ZR f11 , UN ZR f10 and UN ZR f01 and
UN ZR f00 are satisfied. Therefore, we can say that Piatetsky-Shapiro satisfies the property
UN ZR as defined in the paper.

Appendix B: Clustering results from Sect. 5

The cluster memberships resulting from empirical analysis on the synthetic datasets are
provided as an example of the details of cluster formation:

Sparse datasets

Synthetic dataset: Cluster A: {Recall, Precision, Confidence, Jaccard, F-Measure, Odd’s
Ratio, Sebag Schoenauer, Support, Lift, Ganascia, Kulczynski-1, Relative Risk, Yule’s Q,
Yule’s Y, Cosine, Odd Multiplier, Information Gain, Laplace, Zhang, Leverage, Examples
and Counter Examples},Cluster B: {Specificity, Negative Reliability, Accuracy, Descriptive
Confirm, Causal Confirm, Piatetsky-Shapiro, Novelty, Causal Confidence, Certainty Factor,
Loevinger, Conviction, Klosgen, 1-Way Support, 2-Way Support, Kappa, Putative Causal
Dependency, Causal Confirm Confidence, Added Value, Collective Strength, Dependency},
Cluster C: {Mutual Information, Coverage, Prevalence, Least Contradiction, Normalized
Mutual Information, Implication Index, Gini Index, Goodman Kruskal, J-Measure}.

Dense datasets

Synthetic dataset: Cluster A: {Recall, Odd’s Ratio, Specificity, Negative Reliability, Lift,
Coverage, Piatetsky-Shapiro, Novelty, Yule’s Q, Yule’s Y, Odd Multiplier, Certainty Factor,
Loevinger, Conviction, Information Gain, Klosgen, Zhang, 1-Way Support, 2-Way Support,
Kappa, Putative Causal Dependency, Added Value, Collective Strength, Dependency}.Clus-
ter B: {Precision, Confidence, Jaccard, F-Measure, Sebag Schoenauer, Support, Accuracy,
Causal Confidence, Ganascia, Kulczynski-1, Prevalence, Relative Risk, Cosine, Least Con-
tradiction, Descriptive Confirm, Causal Confirm, Laplace, Examples and Counter Examples,
Causal Confirm Confidence}. Cluster C: {Mutual Information, Normalized Mutual Infor-
mation, Implication Index, Gini Index, Goodman Kruskal, Leverage, J-Measure}.
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