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Abstract

Temporal point processes are often used to model

event data streams in the real world, such as finan-

cial transactions, electronic health records, and

social networks. While several parametric ap-

proaches, such as Poisson and Hawkes processes

are used to model temporal dynamics, they often

suffer from the curse of model misspecification.

More flexible RNN based approaches have been

recently proposed to jointly model event time and

marker information through the use of a shared

hidden representation. Although the RNN based

approaches achieve superior results compared to

the earlier approaches, all these methods make the

restrictive assumption that the event and marker

dynamics follow the same distribution for all sub-

populations. To do away with this assumption,

we propose a stochastic model combining sub-

population cluster dynamics with the recurrent

marked point process. We posit that this gener-

ative model can better capture the dynamics of

event states conditioned on the discrete and contin-

uous latent structure. We validate this hypothesis

by evaluating this model on synthetic as well as

several real-world datasets.

1. Introduction

Temporal dataset of event streams can be represented as

S = {(tj1:Tj
,x

j
1:Tj

)Nj=1}, where x
j
1:T = (xj

1, · · · ,x
j
Tj
)

are the marker or event information and t
j
1:Tj

=

(tj1, · · · , t
j
Tj
), tji < t

j
i+1, are the real valued timestamps

for the event sequences, for sequence j of length Tj . The

event markers can either be a real valued (bio-markers for

patients visiting hospital) or a categorical (buy/sell events in

financial transactions) random variable. In this work, we ad-

dress the problem of modeling such datasets using temporal

point processes.
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Temporal point processes are often used to model the den-

sity of time of the next event conditioned on the history,

i.e. f(tn | Htn), Htn := {t1:n−1} (Rasmussen, 2011).

Typically, point processes parameters are encoded using

the conditional intensity function, λ∗(t) = λ(t|H<t) =
Pr[event ∈ [t, t+ dt)|H<t], which given the past, encodes

the probability of an event occuring at future time points.

For example, conditional Intensity function of the Hawkes

process is defined as, λ(t) = λ0 + α
∑

ti<t exp(−
t−ti
σ

),
for λ0, α, σ > 0. This equation asserts that the probabil-

ity of an event occurring increases right after the previous

event (self-exciting), and decays exponentially over time

otherwise. When a property of the dynamics is known (e.g.,

self-exciting events, self-correcting events, etc.), several

classic temporal point process models, such as Poisson and

Hawkes processes, work well (Hawkes & Oakes, 1974).

However, they are often too simplistic when applied to large

real-world datasets. Du et al. (2016) propose an alterna-

tive to this parameterization, summarizing the history Htn

using the hidden state of a recurrent neural network. Du

et al. (2016) proposed to model the intensity function of

the point process using the following exponentiated linear

function, where h represents the hidden state of RNN with

the sequence as inputs,

λ∗(t) = exp(vt
T

hj +wT (t− tj) + bt) (1)

The time likelihood of nth event at time t, given the history

is simply f∗(t) = λ∗(t) exp (−
∫ t

tn−1

λ∗(τ)dτ). The linear

form in Eq. 1 allows calculating the time log-likelihood in

analytical form. We can also choose to directly model time

probability density function using an arbitrary non-linear

parameterization (Xiao et al., 2017c). In Section 2, we

discuss our model agnostic to any choice of time/intensity

density parameterization.

Following the success of the recurrent approach to model

point processes, several neural network-based algorithms

have been proposed. In an attempt to generalize these pro-

cesses, Mei & Eisner (2017) proposed the Neural Hawkes

process using a modified continuous time LSTM cell. To

further incorporate an inherent clustering in the sequence of

dynamics, a mixture of Hawkes processes was proposed (Xu

& Zha, 2017; Du et al., 2015). However, real-world data is

often generated by a mixture of diverse dynamic processes,

and an algorithm that learns only certain types of tempo-
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ral processes can lead to model bias. For example, in the

clinical setting, the health status of a patient with diabetes

may decline over time (self-exciting events), while a patient

with hypertension may recover over time (self-correcting

events) implicating separate point process dynamics within

the same electronic health records dataset.

Furthermore, real-world stochasticity is often ignored while

modeling point processes. This has been the focus of recent

work on augmenting a deep state-space model with a re-

current neural network to effectively model sequential data

(Fraccaro et al., 2016; Krishnan et al., 2017). We propose a

stochastic sequential generative model for point processes

augmented by recurrent deterministic hidden states, stochas-

tic sequential states, and categorical latent states to capture

mixtures of different point processes while learning useful

cluster representations among the sample dynamics.

In this work, we make the following contributions: we pro-

pose two generative models that try to capture the dynamics

of marked point processes. These models aim to capture

mixtures of point processes that could be generating the data

using additional stochastic latent states.

2. Methods

We define a deep generative model, pθ, with deterministic

hidden recurrent states, h1:T , stochastic continuous states,

z1:T , as well as a categorical discrete latent state, y, on

the temporal dynamics. In the subsequent discussion, we

will use ~a as a shorthand for a1:T and use A = {z,h}0 to

denote initial states. With this overall structure, we propose

two models to capture the latent dynamics of the marked

temporal point process. In Figure 1, the generative and

inference modules are shown for both the models.

2.1. Generative Model

We can write the joint distribution of the data, the continuous

states (z1:T ), the deterministic states (h1:T ), and the discrete

categorical prior (y) in the graphical Model 1 (Figure 1a)

as:

pθ(~x,~t,~z, ~h,y|A) = pθy(y)

T
∏

i=1

pθz(zi)pθx,t
(xi, ti|y, zi,hi)

× pθh(hi|xi−1, ti−1,hi−1)

while for Model 2 (Figure 1c), the joint pθ(~x,~t,~z, ~h,y|A)
factorizes as:

pθy(y)

T
∏

i=1

pθz(zi|zi−1)pθh(hi|(x, t,h)i−1)

×pθx,t
((x, t)i|y, (z,h)i)

where, the latent categorical variable, y, taking K discrete

states, has density pθy(y) =
∏K

k=1 pθy(yk = 1), and pa-

rameters θy. The deterministic states are parameterized

using an RNN (or modern variants like GRU, LSTM) with

parameters θh. Furthermore, to allow for stochasticity in

the data generation dynamics, the variables ~z influence the

observed variables through a stochastic layer with parame-

ters θz. The states {~z, ~h,y} jointly generate the observed

data, which are event markers (~x) and event timestamps (~t).

We define θ = {θx,t, θz, θy, θh} as the generative model

parameters. There are multiple choices for parameterization

of θx,t. To model event time information, we can have both

a Normal distribution as well as a parametric conditional

intensity function (equation 1). To predict the categorical

event markers, we learn the logits of the distribution.

The two models induce two variants in the dynamics of

stochastic sequential states. Consequently, we have separate

assumptions on the priors of latent variables. For the first

variant, each stochastic state prior is assumed to be Nor-

mally distributed, pθz(zi) = N (0, I). Thus an independent

stochastic perturbation is applied to the point process at each

time step. In the second variant, we model pθz(z0:T ) using a

Deep Markov Model (Krishnan et al., 2017), leading us to as-

sume pθz(zi|z0:i−1) = N (zi;µi(zi−1), σ
2
i (zi−1)), where

the transition matrix, is implemented using a non-linear neu-

ral networks. The initial stochastic state is sampled from

N (0, I). We use a uniform categorical prior on the discrete

latent states, y.

The log-likelihood of observed event and time sequence of

the samples S is,

L(θ) =
∑

i

log pθ(x
i
1:Ti

, ti1:Ti
|z0,h0) =

∑

i

Li(θ)

To aid readability, we omit the sample index i from the

equations to whenever it is clear from context. To com-

pute the log-likelihood, we need to marginalize the vari-

ables ~z, y and ~h. The distribution of deterministic states

ht can be thought as a dirac delta function centered at

h̃t = fθh(h̃t−1,xt−1, tt−1) and θh being the RNN parame-

ters. Thus by replacing h1:T with h̃1:T , we can marginalize

h (Fraccaro et al., 2016). The marginalization of the dis-

crete state, as well as sequential continuous states, can be

approximated using ancestral Monte Carlo sampling. We

discuss this in the subsequent section.

2.2. Inference Model

To maximize log-likelihood of the observed data, stochastic

sequential states as well as the discrete latent states need to

be marginalized out. Due to non-linear nature of the param-

eterization, analytically marginalizing out the variables is

not possible. Furthermore, for the non-linearly dependent

categorical discrete latent variable, exact inference would

increase computation as O(K) where K is the number of

states the variable can take. For large enough datasets, even
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Figure 1. (a) Generative Model for Model 1 (b) Inference Model for Model 1, (c) Generative Model for Model 2 (d) Inference Model for

Model 2. zi are stochastic sequential nodes. y is categorical latent state. h and a are deterministic hidden states of forward and reverse

RNN. x, t are observation of the marked temporal point process.

the linear increase in computation is impractical. Thus, we

resort to variational inference, where we maximize the vari-

ational evidence lower bound (ELBO), F(θ, φ), to the likeli-

hood. We estimate the posterior distribution pθ(~z,y, ~h|~x,~t)

with an approximate posterior qφ(~z,y, ~h|~x,~t). Thus the

log-likelihood can be written as 1:

L(θ) ≥F(θ, φ)

=

∫

qφ(~z, ~h,y|~x,~t, A) log
pθ(~z, ~h, ~x,~t,y|A)

qφ(~z, ~h,y|~x,~t, A)
dyd~zd~h

where φ are the parameters of the variational bayes infer-

ence network while θ are the parameters of the generative

neural network. We can maximize {θ, φ} using stochastic

gradient ascent.

To efficiently perform inference, we factorize the joint in

a way that exploits the temporal structure of the model.

Also, we do the same for the posterior to get the following

decomposition for Model 1:

pθ(~z, ~h,y|~x,~t, A) = pθ(y|~x,~t,
~̃
h)
∏

i

pθ(zi|(x, t)i,y, h̃i)

We design our approximate posterior to take the same fac-

torized form:

qφ(~z, ~h,y|~x,~t, A) = qφ(y|~x,~t,
~̃
h)
∏

i

qφ(zi|(x, t)i,y, h̃i)

where the deterministic hidden state h̃i =
fθh(h̃i−1,xi−1, ti−1) accounts for the effect of the

past.

Similarly, for Model 2, the factorization of the posterior and

1Full derivation of ELBO for both models can be found in the
Appendix

its approximation are:

pθ(~z, ~h,y|~x,~t, A)

= pθ(y|~x,~t,
~̃
h)

T
∏

i=1

pθ(zi|zi−1, (x, t)i:T ,y, h̃i:T )

qφ(~z, ~h,y|~x,~t, A)

= qφ(y|~x,~t,
~̃
h)

T
∏

i=1

qφ(zi|zi−1, (x, t)i:T ,y, h̃i:T )

Now we discuss how we sample from each of these distribu-

tions in the approximate posterior. Approximate posterior

of the categorical latent variable, qφ(y|~x,~t,
~̃
h) is a Cate-

gorical distribution, parameterized by a neural network that

takes in the observed variables and the hidden states as in-

put. We accomplish this using a reverse RNN but choose to

drop the dependence on
~̃
h for Model 1 to keep its inference

much faster. The hidden state of the reverse RNN evolves

as at = fφh
(at+1, [xt, tt, h̃t]). This is usually a fast and

independent step, which only requires the knowledge of the

inputs ~xt,~t to compute. The inference network for continu-

ous latent variables zt is amortized over time and is modeled

using a diagonal Gaussian: zi ∼ N (µq
i , log v

q
i ). The param-

eters of this distribution have no temporal dependence in

the case of Model 1, leading to much faster inference. In

the case of Model 2, since there is temporal dependence

of zi on zi−1 (all the other inputs to this network can be

computed beforehand), we need to perform inference in a

serial manner.

We can sample a sequence ~z using ancestral sampling, start-

ing with sampling from z1, using the sampled zi−1 to ob-

tain the next distribution. Each of these sampling steps is

performed in a differentiable manner using the reparameter-

ization tick (Kingma & Welling, 2013). Next, we discuss the
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sampling of the categorical latent state, y, which is also re-

quired for getting each of the zi. We found that the gradient

estimate provided by the REINFORCE method (Williams,

2005) had a high variance for our experiments. Therefore

we choose the Gumbel-softmax estimator (Jang et al., 2016),

which provides a biased, but low variance estimator for the

gradient, in practice.

Given the generative and inference network parameters

{θ, φ}, we take a Monte Carlo sample using the reparame-

terization trick and maximize the ELBO 2 using stochastic

gradient ascent.

3. Experiments

We evaluate our models on both synthetically generated

and real-world datasets. For both cases, we report the log-

likelihood (ELBO for our model which is a lower bound on

the log-likelihood). The datasets we choose/generate differ

greatly from each other in sequence-lengths, time-scales,

and domains. We compare our results with the Recurrent

Marked Temporal Point Process (RMTPP) model (Du et al.,

2016). For all the experiments, we model the timestamp

likelihood, f∗(t), using a Gaussian distribution (Xiao et al.,

2017c). Our inference network uses smoothing, thus the pre-

dictive metrics (e.g, the accuracy of next event, rmse of next

event time) of future time steps are not valid. All models

were implemented using PyTorch. All expectations were

approximated (wherever necessary) using single samples to

reduce runtime of the models.

3.1. Synthetic Data

To illustrate the effect of a mixture of multiple disparate

point processes, we generate sequences from the Hawkes

process, Homogenous Poisson Process, Non-homogenous

Poisson process, and Self-correcting process. To generate a

sequence from a process, we randomly sample k separate

sets of pertinent parameters, where k ∈ {4, 8, 16}. For

each set of k parameters, we sample 200 training sequences,

40 validation sequences and 50 test sequences. The mean

and median sequence lengths for the training dataset is ∼
35 and ∼ 20 respectively. We report the log-likelihood

numbers in Table 1. Additional details about the synthetic

data, parameters, hyper-parameter and network structure are

provided in Appendix C.

3.2. Real World Data

We evaluate our model on five real-world datasets and report

the results in Table 2. The MIMIC-II, Stack Overflow, and

Financial datasets were processed as described in (Du et al.,

2016), while the preprocessing of MemeTrack and Retweets

2derived in the supplementary section

k RMTPP Model 1 Model 2

4 −0.0694 ≥ 0.1311 ≥ 0.2285

8 −0.0672 ≥ 0.0003 ≥ 0.1863

16 −0.1776 ≥ 0.0209 ≥ 0.0445

Table 1. Average log-likelihood for synthetic data for different

sizes of parameter sets

datasets was identical to that of (Mei & Eisner, 2017).

From Table 2, we can observe that extra stochasticity

(through latent states) can be powerful in modeling sequen-

tial behavior of marked point processes. MemeTracker and

LastFM datasets contain 5000 and 3150 dimensional cate-

gorical markers, which makes it a difficult task to extract

information from them to help the modeling process. We

posit that this is a potential reason that the improvement in

our model in these two datasets is small. MIMIC-II dataset

also contains about 585 samples with 75 marker labels, mak-

ing it difficult to effectively learn the behavior.

DATASET RMTPP Model 1 Model 2

MIMIC-II −2.0668 ≥ −1.8330 ≥ -1.7462

Stack Overflow −5.1148 ≥ −4.0039 ≥ -3.3568

MemeTrack −2.5614 ≥ −2.5930 ≥ -2.5117

Retweet −1.2560 ≥ −0.0765 ≥ 0.2707

Financial −0.4008 ≥ 0.6687 ≥ 1.1937

LastFM −8.0050 ≥ −7.9869 ≥ -6.7539

Table 2. Average log-likelihood for real-world datasets using Gaus-

sian parameterization of time density

4. Discussion & Future Work

In this work, we propose a stochastic sequential model

which combines both deep state space model as well as

the deterministic RNN for modeling marked temporal point

processes. To perform inference, we used smoothing tech-

niques. However, in practical applications we are often

interested in the prediction task, which leads us take up

filtering as part of future work. With respect to the modeling

decisions, instead of assuming conditionally independence

for the marker and timestamp at a certain point in time,

jointly modeling them dependent should make the model

more effective. Finally, while using Gaussian distribution

to model the time density allows us to parameterize any

non-linear function, the conditional intensity function is

more meaningful in case of point processes. Furthermore,

modeling conditional intensity as a non-linear function also

remains a challenge. We intend to compare these design

choices as part of future work.
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A. Related Work

Temporal point processes have been widely used for model-

ing complex dynamics in the field of finance, econometrics,

information diffusion (Du et al., 2013; Rodriguez et al.,

2011; Zhao et al., 2015). Hawkes process has been used

to model self-exciting events such as after-shocks of earth-

quakes (Hawkes & Oakes, 1974; Bacry et al., 2016). How-

ever, most standard point processes incorporate some as-

sumptions about the distribution of the time intervals. In

the case of the Poisson process, distribution of event inter-

vals lengths is a stationary process while non-homogenous

Poisson process model time-dependent intervals, while still

being independent of the history. Hawkes processes and self-

correcting processes have explicit dependence on history to

model future time steps.

In a different formulation, Du et al. (2016) use a recurrent

neural network to model marked temporal point processes.

The RNN models do not need any specific assumption about

the model, and yet are very effective in learning future

timesteps from history through their memory state. Fur-

thermore, recently different neural network structure has

been proposed to model either the conditional intensity func-

tion or explicit time interval successfully (Yang et al., 2018;

Xiao et al., 2017a;0; Zhao et al., 2017; Li et al., 2017; Wang

et al., 2017; Xiao et al., 2017b). The use of a neural network

to compute the Hawkes process parameter has been also

proposed (Mei & Eisner, 2017).

On the other hand, models have been proposed to learn a

hierarchical structure of the point process. Dirichlet Hawkes

process has been proposed to learn mixture of Hawkes pro-

cess in the presence of multiple clusters (Xu & Zha, 2017).

In (Sharma et al., 2018), the authors proposed a sequential

state space model to understand larval zebrafish behavior.

Our work takes the latter approach where we like to learn

some disentangled representation. While RNN is powerful

in modeling time-intensity function, explanability is often

lost due to their black-box nature. On the other hand, param-

eterizing point processes using the standard model may not

be enough. Real world data might be a mixture of different

standard processes with different parameters.

There has been a lot of progress in stochastic sequential mod-

eling. It has been shown that deterministic hidden states

are not enough to model real-world stochasticity (Fraccaro

et al., 2016; Krishnan et al., 2017). Based on the seminal

work of Kingma & Welling (2013) on auto-encoding varia-

tional Bayes, several stochastic sequential models have been

proposed, showing state of the art log-likelihoods on speech

and audio datasets (Chung et al., 2015; Bayer & Osendorfer,

2014; Maddison et al., 2017; Goyal et al., 2017). However,

learning a hierarchical structure from a deep generative

model has not found much success (Zhao et al., 2017). It

has been observed that if the lower layer latent state can max-
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imize the ELBO objective, a higher layer latent state will

collapse to prior distribution minimizing the KL divergence

loss. Several tricks have been applied to learn to prevent this.

In the KL annealing trick, loss from KL divergence is given

weight from 0 to 1 over several epochs (Fraccaro et al.,

2016). In β-VAE, authors outweighed KL loss to learn

disentangled useful representation (Higgins et al., 2017).

Discrete latent variables pose their own challenge in that

they’re not amenable to the reparameterization trick. Thus,

several algorithms have been proposed using biased Gum-

bel softmax trick, unbiased REINFORCE algorithm (Jang

et al., 2016; Williams, 2005). While using Gumbel-softmax

distribution to approximate categorical distribution results

in a biased estimate, variance decreases largely compared

to the REINFORCE estimator.

B. Model Derivation

In this section, we use ~a as a shorthand for a1:T . We can

derive the lower bound on the likelihood L ((x, t)1:T ):

log pθ((x, t)1:T )

≥

∫

y,~z,~h

qφ(~z,y, ~h | ~x,~t) log
pθ(~x,~t,y,~z, ~h)

qφ(~z,y, ~h | ~x,~t)

= Eqφ(~z,y|~x,~t)

[

pθ(~x,~t | y,~z, ~h)
]

− KL
(

qφ(~z,y | ~x,~t) || pθ(y,~z)
)

For simplicity of the equations, we replace (x, t), with x.

B.1. Model 1

The expectation term can be written as:

E
qφ(y,~z,~h|~x)

[

T
∏

t=1

log pθ(xt | y,ht, zt)

]

=
T
∑

t=1

∫

~h

∫

y

∫

~z

qφ(~h | ~x)qφ(y | ~h, ~x)

× qφ(~z | ~h,y, ~x) log pθ(xt | y,ht, zt)

=

T
∑

t=1

∫

y

∫

zt

qφ(y |~̃h, ~x)qφ(zt | h̃t,y,xt)

× log pθ(xt | y, h̃t, zt)

=

T
∑

t=1

E
qφ(y|̃~h,~x)

Eqφ(zt|h̃t,y,xt)

[

log pθ(xt | y, h̃t, zt)
]

The KL term:

KL
(

qφ(y,~z, ~h | ~x) || pθ(y)
T
∏

t=1

pθ(ht|ht−1xt−1)pθ(zt)

)

=

∫

y

∫

~z

qφ(y |~̃h, ~x)qφ(~z |~̃h,y, ~x)

×

[

log
qφ(y |~̃h, ~x)

pθ(y)
+ log

qφ(~z |~̃h,y, ~x)
∏T

t=1 pθ(zt | zt−1)

]

= KL
(

qφ(y |~̃h, ~x) || pθ(y)
)

+

T
∑

t=1

∫

y

∫

zt

qφ(y |~̃h, ~x)

× qφ(zt | h̃t,y,xt) log
qφ(zt | h̃t,y,xt)

pθ(zt)

= KL
(

qφ(y |~̃h, ~x) || pθ(y)
)

+

T
∑

t=1

E
qφ(y|̃~h,~x)

KL
(

qφ(zt | h̃t,y,xt) || pθ(zt)
)

B.2. Model 2

The expectation term:

E
qφ(y,~z,~h|~x)

[

T
∏

t=1

log pθ(xt | y,ht, zt)

]

=

T
∑

t=1

∫

~h

∫

y

∫

~z

qφ(~h | ~x)qφ(y | ~h, ~x)

× qφ(~z | ~h,y, ~x) log pθ(xt | y,ht, zt)

=
T
∑

t=1

∫

y

∫

zt

qφ(y |~̃h, ~x)qφ(zt | h̃t:T ,y,xt:T , zt−1)

× log pθ(xt | y, h̃t, zt)

=

T
∑

t=1

E
qφ(y|̃~h,~x)

Eqφ(zt|h̃t:T ,y,xt:T ,zt−1)

[

log pθ(xt | y, h̃t, zt)
]

The KL term:

KL

(

qφ(y,~z, ~h | ~x) || pθ(y)
T
∏

t=1

pθ(ht|ht−1xt−1)pθ(zt|zt−1)

)
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=

∫

y

∫

~z

qφ(y |~̃h, ~x)qφ(~z |~̃h,y, ~x)

×

[

log
qφ(~z |~̃h,y, ~x)

∏T
t=1 pθ(zt | zt−1)

+ log
qφ(y |~̃h, ~x)

pθ(y)

]

= KL
(

qφ(y |~̃h, ~x) || pθ(y)
)

+

T
∑

t=1

[

∫

y,zt−1,zt

qφ(zt−1 | h̃t−1:T ,y,xt−1:T , zt−2)

× qφ(y |~̃h, ~x)qφ(zt | h̃t:T ,y,xt:T , zt−1)

× log
qφ(zt | h̃t:T ,y,xt:T , zt−1)

pθ(zt | zt−1)

]

= KL
(

qφ(y |~̃h, ~x) || pθ(y)
)

+

T
∑

t=1

E
qφ(y|̃~h,~x)

Eqφ(zt−1|h̃t−1:T ,y,xt−1:T ,zt−2)

[

KL
(

qφ(zt | h̃t:T ,y,xt:T , zt−1) || pθ(zt | zt−1)
)

]

C. More Experimental Details

C.1. Synthetic Dataset

To illustrate the effect of mixture of multiple disparate point

processes, we generate sequences from Hawkes process,

Homogenous Poisson Process, Non-homogenous Poisson

process and Self-correcting process.

C.1.1. HAWKES PROCESS

Conditional Intensity function of Hawkes process is defined

as:

λ∗(t) = λ0 + α
∑

i:ti<t

exp

(

−
t− ti

σ

)

The parameters necessary for defining this density are

Θ = {λ0, α, β}. We sample λ0 ∼ unif(0.2, 1), α ∼
unif(0, 1), σ ∼ unif(α, 1). We do this k times, where

k ∈ {4, 8, 16}. For each of the values of k

C.1.2. SELF-CORRECTING PROCESS

For self-correcting point process, conditional intensity func-

tion can be written as:

λ∗(t) = exp(µt−
∑

i:ti<t

α)

The parameters necessary for defining this density are Θ =
{µ, α}. We sample µ ∼ unif(0.5, 1.5), α ∼ unif(0.1, .5).

C.1.3. HOMOGENEOUS POISSON PROCESS

For Homogeneous Poisson process, the intensity function

is constant, i.e., λ∗(t) = λ0. The parameters necessary

for defining this density are Θ = {λ0}, sampled as α ∼
unif(0.1, 1).

C.1.4. NON-HOMOGENEOUS POISSON PROCESS

For non-homogeneous Poisson process, the intensity func-

tion is independent of the past, but is still a function of time.

We define the intensity function as:

λ∗(t) = 0.08 · (0.1sin(πt) + 0.3cos(0.4πt) + 1)

For the purposes of illustration, we did not incorporate any

marker information into the sequences.

C.2. Real-world Dataset

We provided empirical performance on six real world

datasets from various domain used in previous research

(Du et al., 2016; Mei & Eisner, 2017). For all datasets, 20%
of training data was further splitted in validation dataset.

• MIMIC-II contains deidentified clinical visits infor-

mation from critical care patient from the year 2002 to

2009. Event data encodes major disease of the patients

over time and the time information represents the in-

terval after which patient visits the hospital. We used

benchmark datasets from earlier research 3. There are

585 and 65 patients in the training and testing datasets.

Number of disease was 75.

• Financial Transaction dataset was collected from

raw limited book order of high frequency transaction

from NYSE for a stock. Events are either Buy or Sell.

Input data contains a single sequence of buy or sell

events. Train and test sequence length is 624,149 and

69,350 3.

• Stackoverflow Dataset contains awarded badge infor-

mation of the users. The data was collected from the

period of 2012-01-01 to 2014-01-01 resulting 480K
events from 6K users for a total of 22 different types

of badges 3.

• Meme-Tracker Dataset has 5000 event or online me-

dia site. The sequence for a meme defines what time it

will be mentioned at some website. 4Training dataset

contains 93267 event tokens and test dataset contains

14932 event tokes.

• Retweet Dataset contains retweet history of many

tweet sequences. Event type classifies popularity of

3 https://github.com/dunan/NeuralPointProcess
4https://github.com/HMEIatJHU/neurawkes
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retweeter among small, medium and large tweeter. 4

Number of training and testing events are 1739547 and

215521.

• LastFM dataset contains sequential listening habits

of users involving millions of songs. The datasets

contains 3150 events 3.

C.3. Experimental Framework

For all experiments, we used early stopping on validation

dataset, and the model at stopping epoch was used for test-

ing. We only computed log-likelihood for the models.

C.3.1. HYPER-PARAMETERS

We used the following hyper-parameter settings:

1. We used GRU implementation of RNN in Py-

Torch. Hidden state size of the RNN is varied from

{128, 256, 512}.

2. Batch size was fixed to 32 for all datasets, except for

financial transaction dataset which had only few long

sequences as train data. We used batch size of 10 for

financial transaction dataset.

3. We used Maxgradnorm, l2 as well as dropout regu-

larizations. Maxgradnorm was varied in {0.1, 1., 10.}.

Dropout was varied in {0.25, 0.4}. L2 (weight decay)

regularization was varied in {10−5, 10−3}.

4. Number of cluster (k for variable y) was set to 10 for

Model 1 and Model 2. Latent variable z dimension

was fixed to 32.

5. We annealed KL loss from 0 to 1 over 40 epochs.

6. Learning rates that were tried were 1e− 3 and 1e− 4.

The optimizer used was ADAM.

C.3.2. NETWORK ARCHITECTURE

The network architecture was fixed as follows.

1. The marker and time information was embedded into

fixed dimension of 128 and 8 respectively before feed-

ing to RNN. We used a shared representation layer

of dimension 256 from hidden states to output before

creating the output event and time prediction.

2. We used ReLU as a non-linearity after each hidden

state. From shared output representation, we used two

multi-layer perceptron to predict time as well as event

outputs. We used dropout regularizer at this layer.

3. For all models, we compute µt as well as log vart
instead of a point estimation for the next event’s times-

tamp. This allows us to compute log-likelihood while

flexibly modeling variance in the observation.

4. For modeling marker information, the marker network

models the logits in case of categorical marker. For real

valued marker, similar to time, we parameterize mean

and standard deviation of the output using a Normal

distribution. For multi-label marker, we used a sigmoid

at the output layer to separate give us the probability

of each of the events occurring.

5. For our proposed model, we used additional reverse

RNN which takes input as shown in Figure 1. Hidden

dimension of the reverse RNN is kept same as the

forward RNN.

6. The inference module for z is shared over time and

implemented using a MLP with a ReLU non-linearity

and dropout regularization. The inference network for

Categorical random variable was parameterized using

the final state of the Reverse RNN.

7. The full generative and inference network was then

trained with stochastic gradient ascent with maxgrad-

norm and weight decay.


