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Abstract

Within batch reinforcement learning, safe
policy improvement seeks to ensure that
the learnt policy performs at least as well
as the behavior policy that generated the
dataset. The core challenge is seeking im-
provements while balancing risk when many
state-action pairs may be infrequently vis-
ited. In this work, we introduce Decision
Points RL (DPRL), an algorithm that re-
stricts the set of state-action pairs (or regions
for continuous states) considered for improve-
ment. DPRL ensures high-confidence im-
provement in densely visited states (i.e. de-
cision points) while still utilizing data from
sparsely visited states. By appropriately
limiting where and how we may deviate
from the behavior policy, we achieve tighter
bounds than prior work; specifically, our
data-dependent bounds do not scale with the
size of the state and action spaces. In ad-
dition to the analysis, we demonstrate that
DPRL is both safe and performant on syn-
thetic and real datasets.

1 Introduction

Batch Reinforcement Learning (Batch RL) (Lange
et al., 2012) involves developing an effective policy us-
ing a limited number of trajectories generated by an-
other behavior policy. Used in settings ranging from
education, robotics and medicine (Fu et al.), Batch
RL is valuable when interaction with the environment
may be risky (Garcıa and Fernández, 2015) or expen-
sive (Kalashnikov et al., 2018). However, the benefits
of batch RL rely on a sufficiently exploratory behavior

policy (Sutton and Barto, 2018; Kumar et al., 2022).
In scenarios with limited exploration and experts mak-
ing systematic errors, learning an optimal policy may
not be feasible without risking the adoption of an un-
safe policy that performs poorly compared to the be-
havior. Additionally, since real-world Batch RL de-
ployments are often incremental (Fu et al.), it is suffi-
cient—and perhaps preferable—to implement changes
relative to the existing behavior policy. Our focus is
on providing safe, high-confidence modifications in set-
tings with limited exploration in the data.

The main challenge for safe policy improvement (SPI)
is appropriately restricting the learned policy to be
close to the behavior data, while still identifying the
points of improvement over the behavior. Density-
based safe RL, such as conservative Q-learning (CQL)
(Kumar et al., 2019) and behavior cloning (BC), con-
strain the learned policy to be close to behavior pol-
icy. However, this approach is too conservative if the
behavior policy is both stochastic and suboptimal as
it will not choose the better of the explored actions.
Pessimism-based planning (Liu et al., 2020; Yu et al.,
2020; Kidambi et al., 2021) incorporates pessimism in
the value estimates of state-action pairs (proportional
to the uncertainty in the estimates), but can be overly
conservative because it will penalize actions that lead
to states that are not frequently visited (even if the
action itself is observed often enough).

To address the limitations of pessimistic planning and
density-based constraints, support-constrained poli-
cies Wu et al. (2022) restrict the learned policy to the
support of the behavior policy. However, these poli-
cies can become unsafe with even a few noisy actions
or rewards, which are common in practice. Among
support-based methods, count-based techniques like
Safe Policy Improvement with Baseline Bootstrap-
ping (SPIBB) Laroche et al. (2019) impose a count-
based constraint on (s, a) pairs to ensure policy im-
provements occur only over sufficiently observed state-
action pairs. However, SPIBB requires access to the
behavior policy function, which is often impractical in
real-world applications. We demonstrate that its per-
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formance significantly deteriorates when the behavior
policy must be estimated, and its improvement guar-
antees are not tight in practice.

Our key insight is that we need to identify only those
behavior changes that yield the most improvement.
We achieve this by constraining changes to (s, a) pairs
observed frequently in the dataset, specifically those
with a count ≥ N∧ (termed ‘Decision Points’). For
states where we lack high-confidence improvements,
we defer to the current behavior policy. This approach
enhances performance over SPIBB in two ways: it al-
lows for better returns without needing access to the
true behavior policy and enables an explicit ‘DEFER’
flag when we are unsure about achieving safe improve-
ments. The hyperparameter N∧ allows us to balance
confidence in performance improvement, safety, and
the number of changes. Additionally, this method re-
sults in a learned policy with a few high-improvement
changes that can be easily reviewed and implemented
in practice (e.g., by a clinician).

Our work makes the following contributions: (i) We in-
troduce Decision Points RL (DPRL), a safe batch RL
algorithm that restricts improvements to specific state-
action pairs (or regions in continuous states), deviating
from the behavior policy only when confident and de-
ferring otherwise. (ii) Unlike previous methods, DPRL
operates without needing knowledge of the behavior
policy to ensure safety. (iii) DPRL offers significantly
tighter theoretical guarantees than existing algorithms
for both discrete and continuous state problems, with
bounds that depend on the safety threshold parameter
N∧ rather than the state-action space size. (iv) Em-
pirically, we demonstrate that DPRL better balances
safety and improvement compared to alternatives in
both synthetic and real-world medical datasets while
making minimal changes.

2 Related Work

Policy regularization in Offline RL. Many RL
applications require agents to learn from a fixed
batch of pre-collected data, limiting further data col-
lection. Various methods constrain policies to this
data. Density-constraining methods, such as (Fu-
jimoto et al., 2019; Kumar et al., 2019, 2020; Yu
et al., 2022; Thomas et al., 2015b), keep the action
space close to the behavior policy. For instance, (Ku-
mar et al., 2019) constrains action selection based on
bootstrapping errors for actions outside the training
data, while (Kumar et al., 2020) introduces a conser-
vative Q-learning penalty (CQL) to address distribu-
tion shifts between the dataset and the learned policy.
However, we demonstrate that density regularization
techniques can be suboptimal when the behavior pol-

icy is stochastic and suboptimal in certain states. In
contrast, our approach does not impose restrictions on
the policy distribution, only limiting support to fre-
quently observed actions. Support-constraining meth-
ods, such as (Singh et al., 2022), restrict actions to
those within the support of the behavior data but lack
guarantees. Unlike our method, policy regularization
techniques in offline RL do not prioritize safe policy
improvement.

Safe Policy Improvement. Several studies have ad-
dressed safe policy improvement in batch RL settings
(e.g., (Thomas et al., 2015a; Ghavamzadeh et al., 2016;
Laroche et al., 2019)). (Ghavamzadeh et al., 2016)
utilizes pessimism to regularize infrequently occurring
state-action pairs. Meanwhile, (Laroche et al., 2019;
Nadjahi et al., 2019) propose an algorithm that boot-
straps a trained policy with a baseline when uncer-
tainty is high, offering SPI guarantees only when in-
sufficiently observed pairs adhere to the behavior pol-
icy. However, these results only hold if we have access
to the behavior policy a priori. Other works, such
as Scholl et al. (2022) and Wienhöft et al. (2023a),
provide additional guarantees for bootstrapping meth-
ods. Some researchers have used pessimism to regular-
ize the reward or action-value function for rarely ob-
served pairs. (Liu et al., 2020) presents guarantees for
batch RL via pessimistic formulations of policy and Q-
iteration algorithms, while (Kidambi et al., 2021) and
(Yu et al., 2020) focus on learning pessimistic MDPs
for near-optimal policies. (Kim and Oh, 2023) con-
structs a penalized reward function based on state-
action counts but fails to exclude rarely observed pairs.
In contrast, our approach does not regularize the value
function or reward model but directly constrains the
policy, avoiding excessive conservativeness. Notably,
we do not require explicit access to the behavior pol-
icy and provide tighter improvement guarantees.

Non-parametric RL and Trajectory Stitching.
Instead of directly constraining actions and states for
safety and conservatism, there is extensive research on
improving models through nonparametric methods or
heuristics in areas with uneven data coverage. Among
these, Shrestha et al. (2020) use k-nearest neighbors to
estimate reward and transition models, which works
well when neighbors are nearby but fails if neighbors
are distant, while others such as Gottesman et al.
(2019) combine parametric and nonparametric meth-
ods for better policy evaluation. Unlike these, our
work makes no assumptions of the form of value func-
tion and offers a general analysis for safe policy im-
provement. Other methods, like those by Char et al.
(2022); Hepburn and Montana (2022), use distance-
based metrics for value function approximation but
do not focus on safety policy improvement and assume
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accurate model estimation, which is challenging with
uneven data coverage. (Zhang et al., 2022) introduce
decision regions for safe policy learning using a heuris-
tic approach without theoretical guarantees, unlike our
method. Notably, none of these heuristic or nonpara-
metric approaches offer any theoretical guarantees as
we do here. More closely related, (Lederer et al., 2019)
use Gaussian Processes (GPs) to estimate transition
models. Though their approach does provide theoret-
ical bounds, our guarantees are tighter; we also focus
explicitly on the task of safe policy improvement.

Learning to Defer to Human Expertise. Pol-
icy regularization, SPI, and trajectory stitching meth-
ods do not effectively allow for selective use of the be-
havior policy during decision-making or deferring to it
when the learned policy may not be significantly bet-
ter. Some studies focus on learning to defer to human
expertise in both static and sequential contexts. For
instance, (Madras et al., 2018) and (Mozannar and
Sontag, 2020) investigate this in static classification
tasks, while (Li et al., 2011) explore it in online settings
that require a polynomial number of deferrals. In of-
fline settings, however, more frequent deferrals may be
more reasonable, as proposed here. (Straitouri et al.,
2021; Joshi et al., 2022) also study deferring to the
behavior policy when uncertain but lack theoretical
guarantees.

3 Background

An MDP is a tuple (S,A, P,R, γ) of discount γ ∈
[0, 1), states s ∈ S, actions a ∈ A, transition prob-
abilities P (s′|s, a), and rewards R : S × A → R. In
this work, we assume that R is bounded in [0, Rmax],
A is discrete, the starting state is fixed, and that R
and P are unknown.

The behavior policy πb(a|s) is the policy that gener-
ated the observed trajectories, and π(a|s) is the pol-
icy we are trying to learn. Given a policy π, we
call ηπh(s) = Pr[Sh = s|π] the marginal distribu-
tion of Sh under π. Then, ηπ(s, a) = ηπh(s)π(a|s) =
(1 − γ)

∑∞
h=0 γ

hηπh(s, a) is called the marginal dis-
tribution of (s, a). We are given a dataset D =
{Sn

0 , A
n
0 , R

n
0 , · · · , Sn

Tn
, An

Tn
, Rn

t }Nn=1 consisting of N
trajectories, with actions taken by πb. State-action
pairs in D can also be assumed to drawn i.i.d. from a
behavior distribution µ(s, a) = ηπ(s, a). We overload
the notation and also denote the marginal distribution
over states by µ(s) =

∑
a∈S) µ(s, a).

The value Vπ(s) of policy π at state s is the ex-
pected discounted sum of rewards starting from s fol-
lowing policy π: Vπ(s) = Eπ[

∑T
t=1 γ

t−1Rt|s1 = s].
The action-value function (or Q-function) Qπ(s, a)

is the value of performing action a in state s
and then performing policy π after: Qπ(s, a) =

Eπ[
∑T

t=1 γ
t−1Rt|s1 = s, a1 = a]. Let Qmax or Vmax be

upper bounds on Q(s, a) and V (s). We denote ρ(π) as
the value of the start state.

4 Challenges with Prior Algorithms

Issues with Standard Assumptions. Many exist-
ing algorithms make assumptions about the data dis-
tribution. One common assumption is concentrabil-
ity, i.e., ∥ν(s, a)/µ(s, a)∥∞ ≤ C, where ν(s, a) is any
distribution reachable for some non-stationary pol-
icy. The improvement guarantee scales with C. How-
ever, C can be arbitrarily large for real-world dataset,
and algorithms relying on this assumption often di-
verge in practice (Liu et al., 2020). To remedy this,
(Liu et al., 2020) assumed bounded density instead,
i.e., ηπh(s, a) ≤ U for any non-stationary policy π.
The improvement guarantee scales with U/b, where
I[b ≤ µ̂(s, a)] is the filter chosen to exclude low-density
(s, a) pairs in the empirical data density µ̂. However,
the improvement guarantee is arbitrarily loose when
selecting (s, a) pairs with sufficient observations but
low value under the behavior policy.

Illustrative Example. We now show how existing
SPI baselines (PQI, SPIBB, CQL) fail to choose op-
timal actions while avoiding risky ones. To demon-
strate how a pessimism-based approach fails, consider
the first MDP in Figure 1. There are three actions at
the starting state s0: an optimal action, a0, leading
to a ‘forest’ of sparsely-visited states with good out-
comes; a risky action, a2, leading to a ‘forest’ of states
with bad outcomes; and a suboptimal, risk-free action,
a1, that leads to a middle road and is chosen by the be-
havior most of the time. A pessimism-based approach
like PQI—which penalizes value estimates based on
uncertainty—fails to learn that, even though the (s, a)
pairs in the optimal forest are sparse in the data, we
have enough observations to conclude that the good
forest is the better choice. It should be noted that
reducing the threshold for (s, a) density may result in
taking the risky action.

For the second scenario, suppose there are 10 actions,
8 of which lead to extremely low values (and hence
are risky), and it is difficult to determine that they
are risky. One action, a1, is optimal, while another,
a2, is frequently chosen by the behavior but yields
suboptimal rewards. A density regularization method
like CQL chooses the suboptimal action if it increases
its regularization penalty (i.e. favoring the behavior
policy) and chooses the risky actions if it reduces the
penalty.
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Figure 1: Top: Challenging MDPs prior approaches. In the first MDP, the behavior goes left with high proba-
bility. In the second MDP, the behavior goes to state b2 with high probabilit. Green states are part of optimal
trajectories, and red states are part of risky trajectories. Bottom L to R: PQI does poorly on the first MDP, DP
has the tightest safety bounds, and CQL does poorly on the second MDP.

These two MDP scenarios illustrate how current SPI
methods struggle with different types of action-risk dy-
namics. This intuition is supported empirically. In
Figure 1 (left plot), we see that PQI fails to attain a
high 5% conditional value at risk (CVaR 5%) (a metric
used to measure safe improvement) even for relatively
large dataset sizes in the “forest” MDP. Similarly, in
the second MDP (right plot), CQL and SPIBB are
not able to consistently learn a safe policy. In both
cases, we can set an Nmin parameter in DPRL to ig-
nore actions that cannot be reliably estimated to have
a good value. These examples also illuminate the set-
tings in which DPRL performs particularly well: when
there are systematic deviations from the behavior pol-
icy and when we are not required to act at all points
in the state-action space.

Access to behavior. While SPIBB appears to be
similar to DPRL in its use of a count parameter like
N∧, it requires access to the true behavior policy
at training time—like most SPI approaches (Laroche
et al., 2019; Scholl et al., 2022; Wienhöft et al., 2023b).
We show in Section 7 that its performance can be sig-
nificantly worse without access to the behavior policy.
In contrast, we do not require access to the behav-
ior policy during training time. This is an important
consideration in real-world systems, where it can be
difficult to elicit the behavior policy. For example,
when working with doctors, we cannot expect to know
the functional form of their behavior. However, we
do require access to the behavior policy for evalua-
tion, which can be achieved by either running a silent
trial or by using off-policy evaluation (OPE). OPE in

a learning-to-assist framework is a promising area of
research, and beyond the scope of this work.

5 Method

We now describe our decision-point RL method, which
addresses several of the challenges with existing algo-
rithms. We provide bounds for this method in Sec. 6.

Discrete Case. Define the following sets constructed
from the dataset D:

ADP
s = {a ∈ A : n(s, a) ≥ N∧ and Q̂πb(s, a) ≥ V̂ πb(s)},

SDP = {s ∈ S : ADP
s ̸= ∅} (1)

where Q̂(s, a) and V̂ (s) are the estimated values under
the behavior policy πb. The set ADP = {ADP

s } repre-
sents the set actions in each state that we are confident
are advantageous over the behavior policy (in the sense
that the number of visits n(s, a) ≥ N∧). The set SDP

is the set of states where at least one advantageous
action exists. These states are the decision points on
which we will recommend changes. We will defer to
the behavior policy in the set Φ = {s ∈ S : ADP

s = ∅}
because cannot be confident that an advantageous ac-
tion exists in those states.

Once the decision points are determined, we cre-
ate an “elevated” Semi-MDP (SMDP) M̃ =
(SDP,A, P̃ , R̃, γ̃), where the state space is restricted
to the decision points SDP, and the transition, reward,
discount functions are estimated using the dataset D.
We use the SMDP framework since the number of time
steps to reach the next decision point is not fixed, and
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Figure 2: GridWorld: (left) Illustration of our Gridworld environment, (middle) Bias-variance trade-off man-
aged by N∧, (right) Performance of DPRL in terms of CVaR and Mean Value. DPRL provides safe policy
improvement (CVaR), while matching baselines on mean value.

can vary with each (s, a, s′) triplet. The policy set ΠDP

is defined as the set of deterministic policies that select
can only select advantageous actions in each state:

ΠDP = {π : π(a|s) = 0 ∀a /∈ ADP
s } (2)

For each state s ∈ SDP, action a ∈ ADP
s , and next

state s′ ∈ SDP, we say that a transition (s, a, s′, k)
exists in a trajectory if s′ is the first decision point in
the trajectory starting from (s, a) and taking k steps
(only considering first visits), and r̃(n, s, a, s′, k) is the
discounted sum of rewards in the trajectory n starting
from (s, a) and ending in s′ after k steps, and 0 if no
such transition exists. Then, the counts ñ(s, a, s′, k)
are defined as the number of times (s, a, s′, k) exists in
the dataset, and P̃ (s′|s, a), γ̃(s, a, s′) and R̃(s, a) are
computed from these counts (see Algorithm 2 in the
appendix for details):

P̃ (s′|s, a) =
∑T

k=1 ñ(s, a, s
′, k)∑

s′∈SDP

∑T
k=1 ñ(s, a, s

′, k)
, (3)

γ̃(s, a, s′) =

∑T
k=1 ñ(s, a, s

′, k)γk∑T
k=1 ñ(s, a, s

′, k)
,

R̃(s, a) =

∑
s′∈SDP

∑T
k=1

∑N
n=1 r̃(n, s, a, s

′, k)∑
s′∈SDP

∑T
k=1 ñ(s, a, s

′, k)
(4)

We optimize over the policy set ΠDP by using policy
iteration (Bradtke and Duff, 1994; Sutton, 1998) on

M̃ . In each iteration i, the policy π(i) is evaluated to

get V
(i)

M̃
, which is then improved to get π(i+1):

π(i+1)(s) = argmax
a∈ADP

s

R̃(s, a) + EP̃ (s′|s,a)γ̃(s, a, s
′)V

(i)

M̃
(s′)

(5)

If the policy iteration converges after K steps to give
π(K), the final policy πDP can then be used to either
defer to the behavior policy or to make a better deci-
sion for a given state s:

πDP(s) =

{
DEFER if s ∈ Φ

π(K)(s) otherwise
(6)

Continuous Case. For continuous state spaces, we
describe a variant of the DP algorithm that can be
used to provide safe policy improvements for any given
state (for pseudocode, see Algorithm 3 in the ap-
pendix). The algorithm involves storing the dataset
D. We define the following distance metric over state-
action pairs (s, a) and states s:

d((s, a), (s′, a′)) = d(s, s′) if a = a′, and ∞ otherwise

d(s, s′) = ∥s− s′∥

Given a state s, define the set of neighbors of s within
a ball of radius r as N (s) = {Sn

t : d(s, Sn
t ) ≤ r for n =

1, . . . , N} and the count of neighbors as n(s) = |N (s)|.
Note that our analysis assumes the first neighboring
state is included per trajectory n. However, in prac-
tice, including all neighbors helps reduce the variance
of the estimates. Further, for each action a, N (s, a) =
{(Sn

t , A
n
t ) : d((s, a), (Sn

t , A
n
t )) ≤ r for n = 1, . . . , N}

and n(s, a) = |N (s, a)|. We use a Ball-Tree data struc-
ture to efficiently find a neighbor in O(logK) time
after O(K logK) preprocessing time, where K is the
total number of points to search over. Analogous to
the discrete case, we define the set of advantageous
actions in state s as:

ADP
s = {a ∈ A : n(s, a) ≥ N∧ and Q̂πb(s, a) ≥ V̂ πb(s)}

(7)
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where Q̂πb(s, a) and V̂ πb(s) are estimated by averag-
ing the returns of the neighbors in N (s, a) and N (s),
respectively. We defer to the behavior if no advanta-
geous actions exist in the state, and return the action
with the highest estimated Q value otherwise:

πDP(s) =

{
DEFER if ADP

s = ∅
argmaxa∈ADP

s
Q̂πb(s, a) otherwise

(8)

The policy is implicitly defined using the dataset D,
and we compute it for any state. The above proce-
dure uses non-parametric estimation of Qπb- and V πb-
values using the dataset D. The r hyperparameter
controls the trade-off between bias and variance in the
estimates, as well as the sparsity of improvements. A
smaller r will achieve lower bias and fewer possible de-
cision points, while a larger r will result in a higher
bias of estimates and more decision points. Note that
the variance of the estimates is still controlled because
we average over at least N∧ neighbors in the estimate.
The trade-off versus a parametric approach is that
we do not need to assume a particular form of the
value function, at the expense of storing the dataset
D. This can be a reasonable trade-off in practice when
the dataset is not too large. We show in the analysis
section that this non-parametric approach can achieve
tighter bounds than a parametric approach.

6 Analysis

We now provide performance bounds for the algo-
rithms DPRL-D and DPRL-C presented in previous
section. The following theorem proves that πDP is a
safe policy improvement over the behavior πb.

Theorem 1 (DPRL Discrete) Let πDP be the pol-
icy obtained by the DP algorithm. Then πDP is a safe
policy improvement over the behavior policy πb, with
probability at least 1− δ

ρ(πDP)− ρ(πb) ≥ −
Vmax

1− γ

√
1

N∧
log

C(N∧)

δ
(9)

where C(N∧) is the count of the number of (s, a) pairs
that are observed at least N∧ times in the dataset:

C(N∧) =
∑
s∈S

∑
a∈A

I [n(s, a) ≥ N∧] (10)

Proof sketch. The key fact we exploit is the property
that πDP always takes an advantageous action with re-
spect to Q̂π

b − V̂ π
b . We express the Q̂π

b and V̂ π
b as the

first-visit monte-carlo average of the observed returns,
making sure to split the returns into independent ran-
dom variables (since the returns used to estimate the
Q-values and V -values may overlap). We then bound

the advantage by using the fact that the advantage
is zero for (s, a) pairs for the states we defer, and
bounded for the (s, a) pairs that are observed at least
N∧ times. (See Appendix 10 for the full proof.)

Discussion. Our bound is a function of hyperparam-
eters N∧ and δ, and the data-dependent term C(N∧).
The C(N∧) term in our bound is a count of the num-
ber of (s, a) pairs that are observed at least N∧ times
in the dataset. This term is much smaller than |S| |A|
when the behavior policy visits only a small subset of
the state-action space. The hyperparameter N∧ al-
lows us to directly control the trade-off between high-
confidence policy improvement (high N∧) and higher
performance improvement at the cost of safety (low
N∧).

Comparison to baselines. We summarize the main
differences between our bound and prior work here.
The bounds in prior work are reproduced in Ap-
pendix 11 for reference. Most importantly, our de-
pendence on |S| and |A| comes indirectly through the
C(N∧) term, which differs from the direct dependence
on |S| and |A| by SPI and pessimism-based methods
(Liu et al., 2020; Kim and Oh, 2023). Thus, our bound
is much tighter when the behavior policy has only vis-
ited a small subset of the state-action space more than
N∧ times: we scale in the number of visited parts of
the state-action space C(N∧) rather than |S| |A|. This
difference would be most present when the behavior
policy and transition dynamics are close to determin-
istic, or when the size of dataset is small relative to
the size of the state-action space. On the other hand,
when the size of the dataset is large and the behav-
ior distribution is closer to uniform, all bounds will
be tight. Our dependence on the N∧ parameter and
effective horizon 1/(1 − γ) matches the SPI (Laroche
et al., 2019; Scholl et al., 2022; Wienhöft et al., 2023b)
literature. However, that we do not require access to
πb. Unlike Corollary 2 of (Liu et al., 2020), our bound
does not have a dependence on the threshold b of the
state-action density µ̂(s, a), which has a direct corre-
spondence to our N∧ parameter as b = N∧/|D|. As a
result, their bound gets looser as b gets smaller. This
happens when the size of the dataset gets larger while
keeping the set of (s, a) pairs with N∧ observations
unchanged (i.e., more trajectories were added in the
low-density regions). Our DPRL bound is unaffected
by this superfluous extra data.

Continuous case: DPRL-C. The following theorem
proves that πDP is a safe policy improvement over the
behavior πb in the continuous case. Define M(r,N∧)
as the number of balls of radius r needed to cover
the subset of X ⊂ S × A where each (s, a) ∈ X has
at least N∧ data points in the ball Br(s, a). Simi-
larly, define M(r) as the number of balls of radius r
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needed to cover the entire state-action space. Also de-
fine ϵr as the maximum error in the Q-values in the
ball Br(s, a). Finally, we assume that the error in es-
timating the action-values is bounded for all points
(s′, a′) ∈ Br(s, a): |Q(s, a)−Q(s′, a′)| ≤ ϵr

Theorem 2 (DPRL Continuous) Let the constant
M(r,N∧) be a measure of the volume on S×A that the
dataset D covers, and let the error in estimating the
Q-values using a neighbor is bounded by ϵr, then πDP
is a safe policy improvement over the behavior policy
πb. That is, with probability at least 1− δ:

ρ(πDP)− ρ(πb) ≥ − Vmax

1− γ

√
1

2N∧
log

M(r,N∧)

δ
− 3ϵr

Discussion. The M(r,N∧) term is a measure of the
size of the region in the state-action space for which the
policy improvement is guaranteed. For datasets with
density only on a small subset of the state-action space,
the M(r,N∧) term will be much smaller than M(r).
The second term in the bound quantifies the penalty
paid for using neighborhood-based estimates of the Q-
values. The hyperparameter N∧ influences the bound
directly and indirectly through the M(r,N∧) term.
Higher N∧ leads to a high-confidence estimation of the
Q-values, and also leads to a smaller M(r,N∧) term
since fewer (s, a) pairs can be improved upon. The
hyperparameter r influences the bound through the
M(r,N∧) term and the ϵr term. Smaller r leads to a
low-bias estimate of the Q-values, but also leads to a
larger M(r,N∧) term.

Comparison to baselines. DeepAveragers
(Shrestha et al., 2020) (which uses kNN to iden-
tify neighbors) also have a dependence on a term
similar to M(r,N∧) in our bound. However, their
term approaches M(r) if the dataset is sparse in the
sense that each (s, a) pair has very few neighborhood
points in the dataset (for DPRL, the M(r,N∧) will
be close 0 in this case). The logM(r,N∧) term in our
bound is a non-parametric alternative to the log |F|
term in bounds for methods which use a parametric
function class F (e.g., (Liu et al., 2020)) The inherent
trade-off is that the parametric methods optimize for a
global estimation error ϵF over the dataset (and hence
have a dependence on terms such as ϵF , |F| and |D|),
while our non-parametric method optimizes for a local
estimation error over the neighborhood of each (s, a)
pair (and hence has a dependence on ϵr, M(r,N∧)
and N∧). For large datasets with uniform exploration,
both parametric and non-parametric methods can
have a low generalization error over the dataset, and
thus the improvement is similar. However, for small
datasets or for datasets with non-uniform exploration,
parametric methods can have a looser bound because
ϵF can be large, while our non-parametric method
can have a tighter bound because M(r,N∧) can be
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DPRL’s strong performance: for the chosen hyper-
parameters (N∧ = 50, r = 10), DPRL defers to the
behavior in nearly all states except where it is confi-
dent it can achieve a better outcome.

much smaller because we only incur the errors in
dense regions of the dataset. Finally, we note that
our bound is more actionable than the bounds in
prior work because we can estimate M(r,N∧) using
DBSCAN (Ester et al., 1996) (by computing the total
volume occupied by the core points).

7 Experimental Evaluation

We first evaluate the DPRL on datasets from
discrete-state-action MDPs and GridWorld and from
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Figure 5: DP consistently learns good policies from
suboptimal behavior data across Atari environments.
Each algorithm is trained on 100,000 samples and eval-
uated on 20 episodes after training.
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continuous-state, discrete-action Atari environments,
where we can use the simulators to accurately esti-
mate performance. Finally, we use our algorithm on
continuous-state, discrete-action-real-world dataset of
hypotensive patients in the ICU. We compare DPRL
to SPIBB (Laroche et al., 2019), PQI (Liu et al.,
2020), and CQL (Kumar et al., 2020), which are typi-
cal batch RL methods used for safe policy improve-
ment and span the density-based, pessimism-based,
and support-based constraints.

In what follows, we briefly describe the domain and
then discuss key results from our experiments. Specif-
ically, we consider results over discrete state and ac-
tion spaces using Toy MDP and Gridworld as domains;
as well as continuous state and discrete action spaces
based on Atari and MIMIC III.

Discrete State and Action Spaces: MDP and
GridWorld

We describe the MDPs in Section 4. For both MDPs,
we vary the number of trajectories in the datasets.
For our 10 × 10 GridWorld, we create datasets by
simulating a ‘careless’ expert which is optimal ev-
erywhere except in a few states, where it chooses
the worst action with probability 0.9 (marked orange
in Figure 2). We sample datasets of n trajectories,
n ∈ {10, 25, 50, 100, 500}.

DPRL achieves better theoretical bounds. On
the MDP and GridWorld (Figures 1 and2, we see that
the DPRL provides safe policy improvement (CVaR).
In GridWorld plots, we see that the CVaR without
mean value being affected. The N∧ parameter al-
lows us to control the trade-off between performance
and safety, as shown in Figure 2(right): as N∧ in-
creases, the mean value (performance) decreases, but
the safety increases. On both the MDP and Grid-
World, we see that the DPRL provides tighter bounds
compared to the baselines, as shown in Figure 1(cen-
ter). The bounds are tighter because the C(N∧) term
in our bound is much smaller than the |S| |A| term in
the SPIBB and PQI bounds. Also, since the bound
is data-dependent, it does not degrade as quickly as
SPIBB and PQI for increase in |S|.

DPRL better manages the bias/variance trade-
off than existing methods. Figure 2(center) pro-
vides an insight into how N∧ achieves the trade-off be-
tween safety and performance. As N∧ increases, the
fraction of states where the optimal action is allowed
decreases, leading to increase in bias. At the same
time, the fraction of states where a better action is
chosen increases (considering states where multiple ac-
tions are allowed). This suggests reduced variance in
value estimation.

Atari and Hypotension Datasets

DPRL achieves good performance in high-
dimensional settings. On Atari domains, in Figure
5, we observe that DPRL achieves good performance
even with 100K samples and a ‘careless’ expert who
takes the worst action 50% of the time. In the hy-
potension dataset with continuous states, DPRL is the
only method that achieves higher OPE estimates than
the behavior baseline (Figure 4). We also see how the
ability to defer can be useful in such a complex task:
for the chosen parameters N∧ = 50, r = 10, DPRL de-
fers more than 95% of the time! Such a policy is also
actionable, since the physician can review the actions
much faster than with the other methods.

8 Limitations and Discussion

The DPRL approach we present is non-parametric and
requires storing the entire training data which can be
costly. While we used BallTrees for efficient neigh-
bor search, it would be interesting to explore how
compression methods (e.g., coresets) can be used to
store only a subset of the data. DPRL-C uses the eu-
clidean distance with continuous states. Future work
can look at more sophisticated metrics (e.g. bisimula-
tion distance) and explore their influence on the safety
bounds. Finally, we developed the SMDP formulation
for the DPRL-D algorithm which performed multi-step
planning but the DPRL-C algorithm only performed
1-step planning over behavior. In the future, we plan
to extend the DPRL-C algorithm to multi-step plan-
ning while still maintaining safety guarantees.

9 Conclusion and Future Work

We introduced a decision points-based RL algorithm
for performing safe policy improvement with guaran-
tees. Our approach explicitly constrains the set of
state-action pairs or regions of states considered to
those areas that are most densely visited, while lever-
aging data from sparsely visited states to determine
the ways in which we may deviate from the behaviour
policy. Our experiments demonstrated that our ap-
proach lead to safer policy improvement with more
confident estimates and tighter guarantees on policy
improvement. Future work could explore how to ex-
tend the DPRL-C algorithm to multi-step planning
while still maintain safety guarantees and utilize em-
beddings which are more sophisticated than euclidean
distance and to determine their influence on the safety
bounds.
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10 Proofs

Lemma 3 (Performance Difference Lemma) Let πDP and πb be two policies. Then, the difference in per-
formance between the two policies is given by:

ρ(πDP)− ρ(πb) =
1

1− γ
EηπDP (s,a) [A

πb(s, a)] (11)

where Aπb(s, a) is the advantage of taking action a in state s under policy πb.

Proof: See Lemma 1.16 of Agarwal et al. (200). □

Lemma 4 (McDiarmid’s Inequality) Suppose a function f : X1 × X2 × . . . × Xn → R satisfies the bounded
differences property if:

sup
x′
i,xi∈Xi

f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)− f(x1, . . . , xi−1, xi, xi+1, . . . , xn) ≤ ci. (12)

for all i ∈ [n] and constants c1, . . . , cn. Let X = (X1, X2, . . . , Xn) be an n-tuple of independent random variables,
where Xi ∈ Xi for all i ∈ [n]. Then, for any ϵ > 0,

Pr[|f(X)− E[f(X)]| ≥ ϵ] ≤ exp

(
−2ϵ2∑n
i=1 c

2
i

)
(13)

Proof: See Theorem 2.3 of (Hajek and Raginsky, 2019) □

Theorem 1 (DPRL Discrete) Let πDP be the policy obtained by the DP algorithm. Then πDP is a safe policy
improvement over the behavior policy πb, with probability at least 1− δ

ρ(πDP)− ρ(πb) ≥ −
Vmax

1− γ

√
1

N∧
log

C(N∧)

δ
(9)

where C(N∧) is the count of the number of (s, a) pairs that are observed at least N∧ times in the dataset:

C(N∧) =
∑
s∈S

∑
a∈A

I [n(s, a) ≥ N∧] (10)

Proof: To prove the theorem, we first define a few useful quantities. Let Ωs ⊂ {1, · · · , N} be the set of
trajectories that visit state s and let Ωs,a ⊂ Ωs be the set of trajectories that contain the (s, a) pair. For n ∈ Ωs,
let tn be the first time step that the state s is visited in the trajectory n, i.e., Sn

tn = s. For n ∈ Ωs,a, let t
a
n be

the first time step that the action a is taken in the state s in the trajectory n, i.e., (Sn
tan
, An

tan
) = (s, a). Therefore,

tan ≥ tn. Let G
n
t be the return of the trajectory n starting from time step t, i.e., Gn

t =
∑Tn

k=t γ
k−tRn

k . We define

the value function estimators V̂ πb(s) and Q̂πb(s, a) as follows:

V̂ πb(s) =
1

|Ωs|
∑
n∈Ωs

Gn
tn , Q̂πb(s, a) =

1

|Ωs,a|
∑

n∈Ωs,a

Gn
tan

(14)

Âπb(s, a) = Q̂πb(s, a)− V̂ πb(s) (15)

Therefore, we have the following expectations:

E[Gn
tn ] = V πb(s), and E[Gn

tan
] = Qπb(s, a) (16)

=⇒ E[V̂ πb(s)] = V πb(s), E[Q̂πb(s, a)] = Qπb(s, a), E[Âπb(s, a)] = Aπb(s, a) (17)

and for any n ∈ Ωs,a,

Gn
tn = Gn

tn:tan
+ γtan−tnGn

tan
(18)
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where Gn
tn:tan

is the return of the trajectory n from time step tn to tan (zero if tn = tan).

Now, we can write the empirical advantage Âπb(s, a) as:

Âπb(s, a) =
1

|Ωs,a|
∑

n∈Ωs,a

Gn
tan
− 1

|Ωs|
∑
n∈Ωs

Gn
tn (19)

=
∑

n∈Ωs,a

Gn
tan

|Ωs,a|
−

γtan−tnGn
tan

|Ωs|
−
∑
n∈Ωs

Gn
tn:tan

|Ωs|
−

∑
n∈Ωs\Ωs,a

Gn
tn

|Ωs|
(20)

= S1({Gn
tan
}n∈Ωs,a) + S2({Gn

tn:tan
}n∈Ωs) + S3({Gn

tn}n∈Ωs) (21)

where all the random variables G := {Gn
tan
}n∈Ωs,a ∪ {Gn

tn:tan
}n∈Ωs ∪ {Gn

tn}n∈Ωs are independent and bounded in
[0, Vmax].

We can now apply McDiarmid’s inequality to the function f({Gn
tan
}n∈Ωs,a , {Gn

tn:tan
}n∈Ωs , {Gn

tn}n∈Ωs) = S1+S2+
S3. Therefore, we have:

Pr [f(G)− E[f(G)] ≥ ϵ] ≤ exp

(
−2ϵ2N∧

2V 2
max

)
(22)

=⇒ Pr
[
Aπb(s, a) ≥ −ϵ− Âπb(s, a)

]
≤ exp

(
−2ϵ2N∧

2V 2
max

)
(23)

=⇒ Pr [Aπb(s, a) ≥ −ϵ] ≤ exp

(
−2ϵ2N∧

2V 2
max

)
(24)

where the last inequality follows from the fact that Âπb(s, a) ≥ 0 and N∧ is the minimum number of times the
(s, a) pair is observed in the dataset.

Apply the union bound over all valid state-action pairs C(N∧) =
∑

s∈S
∑

a∈A I [n(s, a) ≥ N∧] to get the desired
result that with probability at least 1− δ:

Aπb(s, a) ≥ −Vmax

√
1

N∧
log

C(N∧)

δ
(25)

Note that we did not need to apply the union bound over the rest of the state-action pairs because the advantage
is zero as πDP = πb in those states.

Finally, we can use the performance difference lemma to get the desired result:

ρ(πDP)− ρ(πb) =
1

1− γ
E[Aπb(s, a)] ≥ − Vmax

1− γ

√
1

2N∧
log

C(N∧)

δ
(26)

□

Theorem 2 (DPRL Continuous) Let the constant M(r,N∧) be a measure of the volume on S × A that the
dataset D covers, and let the error in estimating the Q-values using a neighbor is bounded by ϵr, then πDP is a
safe policy improvement over the behavior policy πb. That is, with probability at least 1− δ:

ρ(πDP)− ρ(πb) ≥ − Vmax

1− γ

√
1

2N∧
log

M(r,N∧)

δ
− 3ϵr

Proof: The proof for the discrete case is identical except that we pay a penalty of ϵr everytime we use (s, a)’s
neighbor’s action-value (Q(s′, a′) for (s′, a′) ∈ Br(s, a)) to estimate Q(s, a). We create a covering C of the dense
region of the dataset. We assume M(r,N∧) ≥ |C|

1. For any point (s, a) with at least N∧ neighbors in Br(s, a), the advantage Aπb(s, a) is bounded from below
because it is a monte-carlo average (like in discrete case analysis). However, using the returns of the
neighbors incurs an ϵr error.
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2. For any point (s′, a′) ∈ C, there is at least one neighbor with at least N∧ neighbors. We incur another ϵr
error. Then we apply union bound over M(r,N∧) points.

3. Finally, we incur another ϵr error for going from points in C to all the points where Aπb(s, a) ≥ 0 (i.e. we
don’t defer).

□

11 Bounds in Prior Work

Here we reproduce the bounds in prior work for reference. The bound by (Laroche et al., 2019) (Theorem 2) is,
with probability 1− δ,

ρ(π̂)− ρ(πb) ≥ −
4Vmax

1− γ

√
2

N∧
log

2 |S| |A| 2|S|

δ
− ρ(π, M̂) + ρ(πb, M̂) (27)

This bound also depends on the N∧ parameter and (1− γ) in the same way as our bound. However, the bound
differs from ours because it has a dependence on the number of states and actions. This is much larger than the
C(N∧) term in our bound, which only scales with the number of (s, a) pairs that are observed at least N∧ times.

The bound by (Liu et al., 2020) (Corollary 2) is, with probability 1− δ,

ρ(π̂)− ρ(πb) ≥ −Õ

(
Vmax

b(1− γ)3
|S| |A|

n
+

Vmax

b(1− γ)3

√
|S| |A|

n
+

γKVmax

(1− γ)2

)
(28)

This bound differs from ours because it has a dependence on b := mins,a η
πb(s, a), and the bound can be even

more loose when η̂πb is used to estimate ηπb . Furthermore, the bound also has a dependence on the number
of states and actions, which can be large in practice. In contrast, our bound is directly in terms of the N∧
parameter, and does not have to assume any bounds on the data distribution. This allows for a tighter bound
in practice even when the excluded (s, a) pairs are the same.

The bound by (Kim and Oh, 2023) (Theorem 2) is, with probability 1− δ,

ρ(π̂)− ρ(πb) ≥ −
γVmax

(1− γ)2
E(s,a)∼η

πb
P̂

[
min

(
1,

√
2

n(s, a)
log
|S| |A|

δ

)]
(29)

where ηπb

P̂
(s, a) is the state-action visitation distribution under the behavior policy and the MLE transition

model. This bound is similar to ours in that it depends on the count n(s, a), but it has a dependence on the
number of states and actions. Furthermore, the dependence on n(s, a) is only useful when the count is large, and
the bound can be loose when there are many (s, a) pairs with low counts. We avoid this by directly controlling
the set of (s, a) pairs that are included in the policy set.

12 Algorithms

12.1 Algorithm: DPRL-Discrete
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Algorithm 1 DPRL-D for Discrete States

1: Input: Dataset, D = {(Sn
t , A

n
t , R

n
t )}

2: Compute Q̂πb , V̂ πb using the dataset D
3: Compute SDP,ADP = {ADP

s : s ∈ SDP} using Eq 5
4: P̃ , R̃, γ̃ ← Make SMDP Parameters(D,SDP)
5: Policy Iteration:
6: Initialize: i← 1 and V (1) ← V̂ πb

7: π(1)(s)← argmaxa∈ADP
s

Q̂πb(s, a) ∀s ∈ SDP

8: repeat
9: i← i+ 1

10: V (i) ← PolicyEval
[
P̃ , R̃, π(i)

]
11: Update π(i)(s) using Eq 5
12: until

∥∥V (i) − V (i−1)
∥∥
∞ ≤ ε

13: Output: π(i)

12.2 Algorithm to Construct SMDP Parameters for Discrete States

Algorithm 2 Make SMDP Parameters

1: Input: Dataset, D = {(Sn
t , A

n
t , R

n
t ) : n = 1, . . . , N, t = 1, . . . , Tn}

2: Input: Decision points, SDP ⊂ S
3: SDP ← set of all possible states
4: for n in [1, · · ·N ] do
5: τn ← dict()
6: for t in [1, Tn] do
7: if Sn

t /∈ τn and Sn
t ∈ SDP then

8: τn[Sn
t ]← t

9: end if
10: τnsorted ← sort(τn)
11: for t, t′ in zip(τnsorted[: −1], τnsorted[1 :]) do

12: Y (Sn
t , A

n
t , S

n
t′)← Y (Sn

t , A
n
t , S

n
t′) + γt′−t

13: G(Sn
t , A

n
t , S

n
t′)← G(Sn

t , A
n
t , S

n
t′) +

∑t′

k=t γ
k−tRn

k

14: ñ(Sn
t , A

n
t , S

n
t′)← ñ(Sn

t , A
n
t , S

n
t′) + 1

15: end for
16: end for
17: end for
18: γ̃(s, a, s′)← Y (s, a, s′)/ñ(s, a, s′)
19: P̃ (s′|s, a)← ñ(s, a, s′)/

∑
s′∈SDP ñ(s, a, s′)

20: r̃(s, a, s′)← G(s, a, s′)/ñ(s, a, s′)
21: R̃(s, a)←

∑
s′∈SDP r̃(s, a, s′)P̃ (s, a, s′)

22: Output: P̃ , R̃, γ̃
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12.3 Algorithm: DPRL-Continuous

Algorithm 3 DPRL-C for Continuous States

1: Input: State s
2: Input: BallTreesa(·,D, r), BallTrees(·,D, r)
3: N (s)← BallTrees(s,D, r)
4: N (s, a)← BallTreesa((s, a),D, r) for all a ∈ A
5: if |N (s)| ≤ N∧ then
6: Output: DEFER
7: else
8: Compute V̂ πb(s) using N (s)
9: Compute Q̂πb(s, a) using N (s, a)

10: Compute ADP
s using Eq 7

11: if ADP
s = ∅ then

12: Output: DEFER
13: else
14: Output: argmaxa∈ADP

s
Q̂πb(s, a)

15: end if
16: end if

13 Details about the Synthethic MDPs

s0

b1

b2

r ∼ Unif[0.5, 0.9]

r = 0.55

c1

cK

r ∼ Unif[0, 1]

r ∼ Unif[0, 1]

ϵ

1− 2ϵ

ϵ/K

ϵ/K

(a)

s0

πb(a0) = ϵ

a1

πb(a2) = ϵ

sD1 s21 sD1

s1K s2K sDK

r ∼ Unif[.65, .75]

f1f2fD

r = 0.55 t11 t21 tD1

t1K t2K tDK

r ∼ Unif[0, 1] (b)
Figure 6: (a) Toy MDP for CQL: The optimal action leads to state b1, and the suboptimal action (frequent
under behavior) leads to state b2. There are also risky states {c1, . . . , cK}. (b) Toy MDP for PQI: The optimal
action (a0) leads to the upper branch with two parallel chains indexed by depth (D) and chain number (K). a1
leads to the middle branch, and a2 leads to the lower branch with two parallel chains indexed by depth (D) and
chain number (K). All branches converge to the final state z. Intermediary dots indicate additional potential
connections between parallel chains.

Experimental details for the bounds plot. To create the bounds plot, we simulated the forests MDP for
50 trials. For each trial, we generated a new dataset, and for each dataset, we computed the bounds for three
methods: DP, SPIBB, and PQI. We varied parameters N∧ in {1, 10, 100} and the number of states to observe
their effect on the bounds (we varied the states by varying the number of chains in the ‘forests” in {10, 20, 30, 50}.
We set the density threshold for PQI to 0.02 for all the simulations.

14 Gridworld Experimental Details

The GridWorld has 100 states and 4 actions. The agent must start at the bottom left cell and reach the top
right cell. The dynamics are stochastic with going to the intended cell with a probability of 0.9 and a simulating
a random action otherwise. The rewards are stochastic, and described in Figure 2(A). We sampled 500 random
datasets from the environment to evaluate the reliability of the algorithms. For DPRL, SPIBB and PQI, we
tested the N∧ parameter in {1, 2, 5, 10, 20, 30} and found N∧ = 20 to be good for all the algorithms. For CQL,
we varied α in {0.01, 0.05, 0.1}.
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15 Atari Experimental Details

We use Atari datasets and environments for our experiments, specifically focusing on five environments: Qubert,
Pong, Freeway, Booling, and Amidar. These environments allow for a diverse range of behaviors and
complexities to evaluate our methods effectively.

Policy Training

• Optimal Policy: We trained an optimal policy for each environment by running a Deep Q-Network
(DQN) for 10 million steps. The Stable Baselines implementation of DQN was used for this training.

• Medium Policy: In addition to the optimal policy, we defined a ”medium” policy by using the state of
the DQN after 1 million steps of training, which represents a less performant but reasonable policy.

Trajectory Simulation We simulated trajectories for each environment with a structured deviation from the
optimal policy:

• Action Selection Probability: For each action in the trajectory, the probability of taking the optimal
action was set to 0.5, while the probability of taking an action based on the medium policy was also set to
0.5.

• Data Generation: We simulated 100,000 samples for each environment, which correspond to a different
number of episodes per environment depending on their characteristics.

This setup creates a structured deviation from the optimal policy, where the action taken can either be optimal
or highly suboptimal, making the dataset suitable for evaluating off-policy methods.

Representation Learning To ensure consistency across all methods, we used a 16-dimensional represen-
tation for state-action pairs, which were learned using the collected datasets. This step standardizes the inputs
for the comparison of various algorithms.

• State Representation: We used the mean of all action representations corresponding to each state to
derive the state representations.

• Data Storage: We utilized a BallTree data structure to store the data, enabling efficient nearest neighbor
searches during evaluation.

Implementation Details We compared several methods using the learned state-action representations, with
the following specific implementations:

• PQI and SPIBB: We used ExtraTrees (with 100 trees) to estimate Q-values. ExtraTrees offers a highly
flexible function approximation for this purpose.

• CQL: Since ExtraTrees is unsuitable for CQL (due to the nature of its loss function), we employed a DQN
architecture with a single hidden layer of 16 nodes for Q-value estimation.

• PQI Density Estimation: For PQI, we estimated the joint density of state-action pairs by counting the
number of neighbors in the vicinity of each state-action pair using the BallTree data structure. This count
was then divided by the dataset size to obtain the density estimate. Although this is a heuristic, it provides
a feasible approach for density estimation in continuous state-action spaces.

– Note: The original PQI paper employed a variational auto-encoder for density estimation, which
was applied only to states, not state-action pairs.

• SPIBB Behavior Policy: We estimated the behavior policy using random forests, and the density of
state-action pairs was computed in the same way as for PQI using the BallTree data structure.
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Table 1: Best hyperparameter combinations for each environment and algorithm (Atari).

hyperparameters

AmidarNoFrameskip-v4 CQL α = 0.0001
DP N∧ = 5.0, r = 0.0001
PQI b = 0.001, r = 0.001
SPIBB N∧ = 5.0, r = 0.001

BowlingNoFrameskip-v4 CQL α = 0.01
DP N∧ = 5.0, r = 0.0001
PQI b = 0.01, r = 0.001
SPIBB N∧ = 10.0, r = 0.001

FreewayNoFrameskip-v4 CQL α = 0.01
DP N∧ = 5.0, r = 0.0001
PQI b = 0.0001, r = 0.001
SPIBB N∧ = 30.0, r = 0.001

PongNoFrameskip-v4 CQL α = 0.1
DP N∧ = 5.0, r = 0.0001
PQI b = 0.001, r = 0.001
SPIBB N∧ = 10.0, r = 0.001

QbertNoFrameskip-v4 CQL α = 0.1
DP N∧ = 5.0, r = 0.0001
PQI b = 0.0001, r = 0.001
SPIBB N∧ = 30.0, r = 0.001

Hyperparameters We conducted extensive experiments with the following hyperparameter settings (see Table
1 for the best hyperparameters):

• DPRL: N∧ ∈ {5, 10, 30}

• SPIBB: N∧ ∈ {5, 10, 30}

• PQI: Density threshold (b) ∈ {1e− 4, 1e− 3, 1e− 2}

• Radius for neighbor search: 1e− 3 (for all methods)

• CQL: Alpha parameter α ∈ {1e− 4, 1e− 2, 1e− 1}

Table 2: Architecture used by each DQN and Representation Learning Network (Atari)

Layer Number of outputs Other details

Input frame size (4x84x84) –
Downscale convolution 1 12800 kernel 8x8, depth 32, stride 4x4
Downscale convolution 2 5184 kernel 4x4, depth 32, stride 2x2
Downscale convolution 3 3136 kernel 3x3, depth 32, stride 1x1
Layers in feedforward net-
work of DQN

[512, 64, 16, |A|] –

Layers in feedforward
network of representation
learning model

[512, 16 * |A|] layer norm, tanh activation after
the last layer
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Table 3: All Hyperparameters for DQN used for training the expert policy

Hyperparameter Value

Network optimizer Adam
Learning rate 0.0001
Adam ϵ 0.000015
Discount γ 0.99
Mini-batch size 128
Target network update frequency 10k training iterations
Evaluation ϵ 0.001

15.1 Additional Plots - Atari
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Figure 7: Performance comparison on the Atari domains.

16 MIMIC Dataset Experimental Details

Cohort and Environment Definition For the continuous states dataset, the EHR data contains deidentified
clinical data of patients admitted to the Beth Israel Deaconess Medical Center ICU unit (Johnson et al., 2023).
We select a cohort of patients with at least 7 mean arterial pressure (MAP) measurements of less than 65 mmHg
(i.e. hypotension) within the first 72 hours of their ICU stay. The states have 11 features, and we add another
18 features as per prior work in the literature (Gottesman et al., 2020). The actions correspond to 4 levels
intravenous (IV) fluid bolus therapy and 4 levels of vasopressor therapy (total 16 discrete actions). Fluid bolus
and vasopressors are the first-line treatments for patients with hypotension in the ICU. We used 500 trajectories
for training (28944 transitions), and 500 trajectories for validation (28710 transitions), and 1000 trajectories for
final evaluation the performance of the algorithms (58033 transitions).

Preprocessing For our cohort, we selected the following features from the raw data for the analysis: creatinine,
fraction inspired oxygen, lactate, urine output, alanine aminotransferase, aspartate aminotransferase, diastolic
blood pressure, mean blood pressure, partial pressure of oxygen, systolic blood pressure, and gcs. These features
have been selected for the hypotension management task in prior work Gottesman et al. (2020)

To create the distance function, we used a weighted Euclidean metric with weights derived from Gottesman et al.
(2020) on this dataset and cohort. The final set of features includes the original features as well as a collection
of handcrafted features, which were determined by domain experts to be relevant for the hypotension task. We
provide the original set of features and the final set of features, along with their corresponding weights, in Table
4.

To ensure the state-action pairs are appropriately matched during the computation of distances, we assigned a
weight of 10,000 to the action dimension when computing the distance between state-action pairs.

Training details For DPRL-C, we need to specify hyperparameters r and N∧. We found r = 10 to give
the best results. We varied the N∧ in {10, 30, 50}. For SPIBB and PQI, we need to provide similar sets of
state-actions with sufficient count or density, and we use the same sets as the ones obtained using r and N∧.

Evaluation To evaluate the MIMIC policies, we estimated the behavior policy πb (using ExtraTrees) and
the Qπ values (using Fitted Q-Evaluation with ExtraTrees). We then use Doubly Robust Off-policy evaluation
(DR-OPE) (Jiang and Li) using these estimates. Note that we do expect πb and Qπ estimates to be imperfect in
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Table 4: Original and Handcrafted Features with Weights and Data Types (MIMIC Dataset)

Feature Weight Data Type Present in the Raw Dataset

creatinine 3 float Yes
fraction inspired oxygen 15 float Yes
lactate 15 float Yes
urine output 15 float Yes
urine output since last action 5 bool No
alanine aminotransferase 5 float Yes
aspartate aminotransferase 5 float Yes
diastolic blood pressure 5 float Yes
mean blood pressure 15 float Yes
partial pressure of oxygen 3 float Yes
systolic blood pressure 5 float Yes
gcs 15 float Yes
gcs since last action 5 bool No
creatinine ever recorded 3 bool No
fraction inspired oxygen ever recorded 15 bool No
lactate ever recorded 10 bool No
alanine aminotransferase ever recorded 5 bool No
aspartate aminotransferase ever recorded 5 bool No
partial pressure of oxygen ever recorded 3 bool No
flag vaso 1 was last action 15 bool No
flag vaso 2 was last action 15 bool No
flag vaso 3 was last action 15 bool No
flag bolus 1 was last action 15 bool No
flag bolus 2 was last action 15 bool No
flag bolus 3 was last action 15 bool No
total vasopressor dose 15 float No
total bolus dose 15 float No
total vasopressor dose last 8 hours 15 float No
total bolus dose last 8 hours 15 float No

parts of the state space due to the complexity and coverage challenges in this real-world dataset. Nevertheless,
we used DR-OPE to mitigate some of the bias of the estimates.


	Introduction
	Related Work
	Background
	Challenges with Prior Algorithms
	Method
	Analysis
	Experimental Evaluation
	Limitations and Discussion
	Conclusion and Future Work
	Proofs
	Bounds in Prior Work
	Algorithms
	Algorithm: DPRL-Discrete
	Algorithm to Construct SMDP Parameters for Discrete States
	Algorithm: DPRL-Continuous

	Details about the Synthethic MDPs
	Gridworld Experimental Details
	Atari Experimental Details
	Additional Plots - Atari

	MIMIC Dataset Experimental Details

