
Inverse Transition Learning:
Learning Dynamics from Demonstrations

Leo Benac1, Abhishek Sharma1, Sonali Parbhoo 2, Finale Doshi-Velez 1

1School of Engineering and Applied Sciences, Harvard University
2School of Electrical and Electronic Engineering, Imperial College London

lbenac@g.harvard.edu, abhisheksharma@g.harvard.edu, s.parbhoo@imperial.ac.uk, finale@seas.harvard.edu

Abstract
We consider the problem of estimating the transition dynam-
ics T ∗ from near-optimal expert trajectories in the context
of offline model-based reinforcement learning. We develop a
novel constraint-based method, Inverse Transition Learning,
that treats the limited coverage of the expert trajectories as a
feature: we use the fact that the expert is near-optimal to in-
form our estimate of T ∗. We integrate our constraints into a
Bayesian approach. Across both synthetic environments and
real healthcare scenarios like Intensive Care Unit (ICU) pa-
tient management in hypotension, we demonstrate not only
significant improvements in decision-making, but that our
posterior can inform when transfer will be successful.

Introduction
In traditional planning scenarios, the rewards R and transi-
tion dynamics T ∗ of the environment are known, and the
goal is to compute the optimal policy π∗ that maximizes
long-term returns. However, in many real-world situations,
the transition dynamics T ∗ are unknown. Model-Based Re-
inforcement Learning (MBRL) addresses this by first learn-
ing T ∗ and then performing planning, which improves data
efficiency and enables counterfactual reasoning (Sutton and
Barto 2018; Ghavamzadeh et al. 2015; Kidambi et al. 2020;
Yu et al. 2021; Lee, Lee, and Kim 2021; Poupart et al. 2006;
Ha and Schmidhuber 2018; Oh et al. 2015; Buesing et al.
2018).

This paper focuses on learning the true dynamics T ∗ in
offline settings using batch data generated by a near-optimal
expert. This is a common setting in fields like healthcare and
education, where one can presume that the behavior policy
is imperfect but generally reasonable. Learning T ∗ from ob-
servational data is challenging due to low coverage of the
state-action space. Without the ability to interact with the
environment, it is crucial to utilize the limited data effec-
tively.

We leverage the knowledge that the trajectories are near-
optimal to better estimate T ∗. Consider the simple 2-state
MDP shown on the next page. The blue path shows the ob-
served optimal behavior leading to the goal state sgoal from
s1 after action a1. The dashed lines represent the alterna-
tive hypothetical paths following an unobserved action a2.
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The fact that the expert chose action a1 implies there must
be a higher likelihood of reaching sgoal via a1 than a2 (i.e.,
T ∗(sgoal|s1, a1) > T ∗(sgoal|s1, a2).

s1 sgoal

a1

a2

a2

Observed expert: a1
Unobserved: a2

A popular definition of near-optimality models an ex-
pert’s actions as being proportional to the action’s values, as
presented in Maximum Causal Entropy Inverse (MCE) RL
(Ziebart, Bagnell, and Dey 2010).

In clinical settings, clinicians often prefer to adminis-
ter treatments from drug families that have similar, reason-
ably good effects, without assigning a specific ranking. Con-
versely, they avoid poorly performing treatments, also with-
out assigning a ranking. Instead of selecting a single best
action, which may be influenced by data collection or other
artifacts, it is often better to focus on sets of actions that
are nearly equivalent in performance (Tang et al. 2020) and
identify which poor behaviors to avoid (Fatemi et al. 2021;
Tang et al. 2022; Rebello et al. 2023).

The most closely related works to ours (Herman et al.
2016; Reddy, Dragan, and Levine 2018) rely on the Max-
imum Causal Entropy (MCE) modeling approach. While
modeling near-optimal expert behavior this way is reason-
able, our modeling approach shows better performance in
clinical settings. In addition, solving for T ∗ within the MCE
framework requires a gradient-based procedure within an al-
ternating optimization process, which is computationally in-
tensive and prone to getting stuck in local optima. Addition-
ally, the constraints used in these methods are soft, meaning
their learned dynamics do not have any guarantees.

To address these limitations, we introduce a novel ap-
proach called Inverse Transition Learning (ITL), based on
hard constraints on the true dynamics T ∗ and the distinc-
tion between the two groups of actions. Our constraints en-
sure that the values of executed actions exceed the values of
actions not taken. If multiple actions are taken in the same
state, they are constrained to be close in value. These thresh-
olds are governed explicitly by a transparent and human-
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understandable parameter, rather than implicitly through the
entropy of an action-value distribution. They can also be
solved for deterministically via a quadratic program (e.g.,
using CVXPY (Diamond and Boyd 2016)), avoiding the
drawbacks of gradient-based optimization. This results in an
optimization procedure that provides guarantees for the es-
timated dynamics and converges significantly faster.

The fact that the trajectories are near-optimal provides
some information about what transition dynamics T ∗ are
feasible, but limited coverage in the batch setting means that
some uncertainty will still remain. Thus, we extend our ap-
proach to the Bayesian model-based setting (Dearden, Fried-
man, and Andre 2013). We develop an efficient approach to
posterior estimation that includes our constraints. Our ap-
proach narrows the gap to the true dynamics T ∗ compared
to baseline Bayesian MBRL methods. Additionally, given a
new reward function, we demonstrate how keeping a poste-
rior over the true dynamics T ∗ can be used to predict when
the transfer will be successful. Our main contributions are:

• We propose a fast, transparent, and more reliable method
to learn a point estimate of the true unknown dynam-
ics T ∗ by leveraging expert demonstrations. Our method
avoids gradient-based optimization, does not rely on the
MCE modeling approach, and enforces constraint guar-
antees on the learned dynamics.

• We incorporate Bayesian inference to learn a posterior
distribution over T ∗. The posterior offers the same con-
straints guarantees for each sample, allows us to quantify
the uncertainty over actions, and can be used to predict
on which reward functions we except to perform well.

Although our method is designed for tabular MDPs, we
demonstrate its effectiveness in continuous domains as well.
We tested our approach in a range of environments, includ-
ing a synthetic Gridworld, 10 different Randomworld en-
vironments, and a real-world healthcare setting. These ex-
periments covered various levels of data coverage and ex-
pert optimality. Our results show that our method performs
well across different metrics, consistently outpacing base-
line methods in both synthetic and real-world scenarios.

Related Works
Model-Based Reinforcement Learning. We explore the
utilization of forward models, which predict the subsequent
state s′ from the current state s and action a ((s, a) → s′),
as defined in (Moerland et al. 2023). These models are
central for understanding action-induced state transitions.
In contrast, backward models identify potential antecedents
to states (s′ → (s, a)) and are used for backward plan-
ning (Moore and Atkeson 1993). Similarly, inverse mod-
els compute actions required to transition between states
(s, s′ → a), beneficial in RRT planning (LaValle 1998). Ad-
ditionally, non-parametric methods like replay buffers en-
able precise estimations (Lin 1992; Vanseijen and Sutton
2015; Van Hasselt, Hessel, and Aslanides 2019), and ap-
proximation methods, such as Gaussian processes, offer al-
ternatives (Wang, Hertzmann, and Fleet 2005; Deisenroth
and Rasmussen 2011). In discrete MDP settings like ours,

tabular maximum likelihood estimation models, noted as
TMLE , represent the state of the art (Sutton 1991).

Bayesian Model-Based Reinforcement Learning
Bayesian MBRL integrates uncertainty into model learning,
as detailed in the foundational works (Ghavamzadeh et al.
2015; Ross and Pineau 2008; Dearden, Friedman, and
Andre 2013). Unlike previous approaches, such as (Poupart
and Vlassis 2008) which address partially observable
settings in discrete factored domains by updating beliefs
based on new data, our method applies Bayesian MBRL
in an offline setting. We infer posterior distributions over
transition dynamics solely from expert knowledge. This
approach utilizes prior knowledge and batch data to develop
models that establish reliable policies (Guo, Yunfeng, and
Geng 2022). In contrast, studies like (Zhang et al. 2020a,b)
focus on learning invariant representations for control
without explicitly modeling transition dynamics, which is a
key aspect of our research.

Learning from Demonstrations. Imitation Learning
(IL) involves learning policies directly from demonstrations
by near-optimal experts using methods like training a policy
at each timestep (Stéphane, Gordon Geoffrey, and Andrew
2010), DAgger (an iterative algorithm integrating expert
feedback) (Ross, Gordon, and Bagnell 2011), and Approx-
imate Policy Iteration with Demonstration (APID), which
uses expert advice to impose linear constraints during pol-
icy optimization (Kim et al. 2013). These techniques pri-
marily focus on behavioral cloning and policy learning. In
contrast, Inverse Reinforcement Learning (IRL) seeks to
learn the reward function R from the dynamics T and ex-
pert demonstrations, facilitating succinct task descriptions
and transferability (Ng, Russell et al. 2000). Methods like
Maximum Margin and Maximum Entropy IRL focus on
deriving R to mimic expert policies robustly (Abbeel and
Ng 2004; Ziebart et al. 2008; Scobee and Sastry 2019).
Addressing R’s non-identifiability, Bayesian IRL suggests
learning a distribution over R, enhancing model adaptabil-
ity (Ramachandran and Amir 2007). Distinct from these
approaches, our work Inverse Transition Learning empha-
sizes learning the true dynamics T ∗, a novel framework con-
structed to integrates expert demonstrations to refine the es-
timation of T ∗. This method aims to understand and model
the actual transitions within the environment, contrasting
sharply with baseline methods that typically rely on maxi-
mum likelihood for estimation.

Preliminaries

Markov Decision Processes (MDPs). An MDPM can be
represented as a tupleM = {S,A, T ∗, γ, R} , where S is
the state space , A the action space, T ∗ is the true dynam-
ics of the environment, γ is the discount factor and R is a
bounded reward function. In planning, the goal is to find the
best policy π∗ corresponding to an MDPM. In this paper,
we focus on tabular MDPs (discrete state and action spaces).
Bellman Equations. The values functions of a policy π are



given below:

V π(s) = E

[ ∞∑
t=0

γtrt | s0 = s, π

]
(1)

Qπ(s, a) = E

[ ∞∑
t=0

γtrt | s0 = s, a0 = a, π

]
(2)

Notation. Let V π ∈ R|S| denote the vector of values V π(s).
We use shorthand Ra ∈ R|S|, Qa ∈ R|S|, and Ta ∈ R|S|×|S|

to represent the vectors R(·, a), Q(·, a) and the matrix T (· |
·, a). We also use shorthand Rπ, Qπ , and Tπ to represent
the vectors Ea∼π[Ra]. Ea∼π[Qa] and the matrix Ea∼π[Ta].
For dynamics T , π∗(T ) denotes its corresponding optimal
policy. In tabular settings, the value functions V π and Qπ

a
can be calculated directly through a closed-form solution:

V π = Rπ + γTπV
π = (I − γTπ)

−1Rπ (3)

Qπ
a = Ra + γTa(I − γTπ)

−1Rπ. (4)

Methods for Estimating the Transition Dynamics T ∗.
In tabular settings, a common method to estimate the true
transition dynamics T ∗ is the Maximum Likelihood Esti-
mate (MLE), denoted as TMLE (e.g., (Barto, Bradtke, and
Singh 1995; Kim and Oh 2023; Ornik and Topcu 2021)).
The number of times the tuple (s, a, s’) is observed is de-
noted by Ns,a,s′ . We apply Laplace smoothing, represented
by δ, to address issues such as zero occurrences in the count
data due to low coverage in our batch data D. The TMLE is
defined as:

TMLE(s′|s, a) = Ns,a,s′ + δ∑
s′(Ns,a,s′ + δ)

(5)

In offline tabular settings, (Herman et al. 2016) leverage
near-optimal batch data to infer dynamics by reusing the
MCE IRL framework (Ziebart, Bagnell, and Dey 2010). We
include this method in our baseline and refer to it as MCE
(or TMCE) moving forward. Their method consist of an in-
terative procedure between taking one gradient step of the
dynamics parameters θ with respect to the loss in equation 6
and then performing soft-Value Iteration, where Q is the soft
Q function.

LMCE
θ (D) =

∑
(s,a,s′)∈D

[
log

(
exp (Qθ(s, a))∑

a′∈A exp (Qθ(s, a′))

)
+ log Tθ (s

′ | s, a)] .
(6)

To model the uncertainty of transitions T ∗ probabilistically,
(Ghavamzadeh et al. 2015) utilizes a Multinomial likelihood
function in conjunction with a Dirichlet prior. This combi-
nation yields the posterior distribution P (T ∗|D), which esti-
mates the transition probabilities based on the observed data
D.

P (T ∗(· | s, a) | D) = Dir(Ns,a + δ | s, a)
∝ Multinomial(Ns,a | s, a) · Dir(δ | s, a) (7)

Note that TMLE represents the mean of the distribution
P (T ∗|D). However, this posterior distribution is not as tight
as it could be because it does not account for the near-
optimality of expert trajectories. To refine this, we utilize ex-
pert signals to develop a tighter posterior P (T ∗|D), enhanc-
ing the estimation of the transition dynamics. To the best of
our knowledge, we are the first to infer a distribution over
the dynamics using expert demonstrations. Furthermore, we
propose a method distinct from (Herman et al. 2016) to de-
rive a point estimate of T ∗. This involves formulating con-
straints based on expert behaviors, offering a more accurate
approach to modeling the true dynamics.

Estimating Transition Dynamics with
ϵ-optimal Expert

This section introduces key definitions to relate the expert’s
optimality to the true dynamics T ∗. We describe the problem
setting as follows:
Definition 1. (ϵ-ball) For any state s and transition dynam-
ics T , an action a is in the ϵ-ball ϵ(s;T ) if it is ϵ-close
to the optimal action according to the optimal Q-function
Q∗(., .;T ) (We refer to actions as valid if they are within the
ϵ-ball for state s and dynamics T , and as invalid if they are
outside this ϵ-ball):
a ∈ ϵ(s;T ) ⇐⇒ max

a′
Q∗(s, a′;T )−Q∗(s, a;T ) ≤ ϵ

Definition 2. (ϵ-optimality) A policy πϵ(.|s;T ) is ϵ-optimal
with respect to transition dynamics T if it exclusively selects
actions from the ϵ-ball ϵ(s;T ) for all states s. An action a is
ϵ-optimal with respect to dynamics T if a ∈ ϵ(s;T ).
Definition 3. (ϵ-ball property) Transition dynamics T sat-
isfy the ϵ-ball property for state s if ϵ(s;T ) = ϵ(s;T ∗) and
all invalid actions are ϵ-away from all valid actions accord-
ing to Q∗(s, .;T ).

We aim to learn dynamics T that enforce the ϵ-ball prop-
erty across all states s, ensuring that these dynamics can dis-
cern between valid and invalid actions.
Definition 4. (Deterministic/stochastic-policy state) A
deterministic-policy state occurs when the ϵ-optimal expert
πϵ(.|s;T ∗) selects a single action a = a∗ in state s. A
stochastic-policy state occurs when the expert selects mul-
tiple possible actions in state s.

Deterministic-policy states are akin to conditions well-
understood by clinicians who are certain of the best treat-
ment, whereas stochastic-policy states resemble conditions
where multiple reasonable treatments are known without
clear superiority.

Problem Setting We assume we are given the MDP M
except for the true transition dynamics T ∗ (i.e.,M\{T ∗}).
We also have access to batch data D = {(si, ai, s′i)}Ni=1,
where the data which is assumed to have been generated
by the behavior policy πϵ(.|s;T ∗), which is ϵ-optimal re-
garding the true dynamics T ∗. Note that when ϵ = 0,
the expert πϵ(.|.;T ∗) is fully optimal, and hence we would
only encounter deterministic-policy states. As ϵ increases,
the expert begins to act more suboptimally, leading to more
stochastic-policy states.



Constraints on Transition Dynamics Given
πϵ(.|.;T ∗)

In this section, we develop a set of constraints compatible
with an ϵ-optimal expert with respect to the true unknown
dynamics T ∗. These constraints are designed to impose the
desired structure when estimating the true dynamics T ∗ by
enforcing the ϵ-ball property (3) for every state s (see Theo-
rem 1). While the true transition dynamics T ∗ are unknown,
we assume access to πϵ(.|.;T ∗) for now but explain in
and Algorithm 1 how to deal with the more realistic set-
tings of having access to trajectories only. This allows us
to determine ϵ(s;T ∗) for each state s by examining the ac-
tions of πϵ(.|s;T ∗) with non-zero probabilities. For a policy
π, the constraints for each state s referred in this paper as
constraints(π) are divided into two sets:

constraint 1(π): Differentiation Between Valid and In-
valid Actions For every a ∈ ϵ(s;T ∗) and every a′ /∈
ϵ(s;T ∗):

Qπ(s, a;T )−Qπ(s, a′;T ) ≥ ϵ

⇐⇒

R(s, a)−R(s, a′) + γ
(
T (· | s, a)− T (· | s, a′)

)⊤
× (I − γTπ)

−1Rπ ≥ ϵ (8)

This ensures that for every state s, every invalid action
is at least ϵ-away from every valid action with respect to
Qπ(s, .;T ).

constraint 2(π): ϵ-Closeness of Valid Actions For each
distinct pair (a, a′) ∈ ϵ(s;T ∗), the absolute difference be-
tween their Q values is bounded by ϵ:

|Qπ(s, a;T )−Qπ(s, a′;T )| ≤ ϵ

⇐⇒∣∣∣R(s, a)−R(s, a′) + γ
(
T (· | s, a)− T (· | s, a′)

)⊤
×(I − γTπ)

−1Rπ

∣∣ ≤ ϵ (9)

This ensures that for each state s, every action within the
ϵ-ball under the true transition dynamics T ∗ is also ϵ-close
under the transition dynamics T .

Theorem 1. If πϵ(. | .;T ∗) = π∗(T ∗) and some dynamics
T satisfies constraints(πϵ(. | .;T ∗)) for each state s, then
π∗(T ) = π∗(T ∗). Hence, T will recover the optimal action
a∗ with respect to the true transition dynamics T ∗ for each
state s. (Note that π∗(T ) refers to the optimal policy of dy-
namics T .)

Proof. See Theorem 1 in the Appendix.

In general, given any deterministic policy π, we can uti-
lize constraints(π) to recover a transition dynamics T such
that π∗(T ) = π, and thus recover dynamics T that explain
the behavior induced by such policy π.

Lemma 1. For any ϵ, if T satisfies constraints(π∗(T )), then
T will satisfy the ϵ-ball property.

Proof. See Lemma 1 in the Appendix.

Constraints on Transition Dynamics Given Batch
Data D Only
In practical settings, direct access to the expert policy
πϵ(·|s;T ∗) for each state s is typically unavailable, neces-
sitating reliance on the batch data only D, which might
not cover all (state, action) pairs comprehensively. We con-
struct an estimated policy, π̂ϵ(·|s;T ∗), such that for s ∈ D,
π̂ϵ(a|s;T ∗) assigns a uniform probability to all actions a
present in D. For state s /∈ D, we determine the optimal
action a using the proposed transition model T (looking at
π∗(T )), and then assign this action a in the policy used to
define constraints, as detailed in line 9 of Algorithm 1.

Methodology
In this section, we demonstrate how to leverage (near) opti-
mal data with our constraints to infer both a point estimate
and a posterior distribution over the true dynamics T ∗, re-
spectively referred to as Inverse Transition Learning (ITL)
and Bayesian Inverse Transition Learning (BITL).

Inverse Transition Learning In Figure 4 of Appendix,
we demonstrate the potential non-convexity of the feasi-
ble region arising from the constraints (Equations 8 and
9), attributed to the inverse operation on T . By substitut-
ing TMLE

π̂ϵ(.|.;T∗) for T in these constraints, we linearize them
and transform the problem into a quadratic convex optimiza-
tion problem, solved efficiently using CVXPY (Diamond
and Boyd 2016). The optimization formulation is:

min
T

∑
(s,a,s′)

Ns,a,s′ ·
[
T (s′ | s, a)− TMLE(s′ | s, a)

]2
subject to ∀(s, a) ∈ D,∀a′ /∈ ϵ(s;T ∗) :

R(s, a)−R(s, a′) + γ (T (· | s, a)− T (· | s, a′))⊤

×
(
I − γTMLE

π̂ϵ(·|·;T∗)

)−1

Rπ̂ϵ(·|·;T∗) ≥ ϵ,∣∣∣R(s, a)−R(s, a′) + γ (T (· | s, a)− T (· | s, a′))⊤

×
(
I − γTMLE

π̂ϵ(·|·;T∗)

)−1

Rπ̂ϵ(·|·;T∗)

∣∣∣∣ ≤ ϵ (10)

We denote the result of this optimization as
solveITL

(
π̂ϵ(.|.;T ∗), TMLE

)
, where TMLE is used

to linearize the constraints. Linearizing the constraints with
TMLE
π̂ϵ(·|·;T∗) is appropriate because it reflects the state-action

space where we have data, and thus where we expect
TMLE to be accurate. This method not only accelerates
training and provides guarantees on the constraints but also
empirically outperforms (Herman et al. 2016), which relies
on gradient descent and can be trapped in poor local optima,
as shown in Table 4.

By iteratively solving the optimization problem as de-
tailed in Algorithm 1, we obtain a point estimate T̂ ∗ that sat-
isfies the ϵ-ball property for each state s inD (see Definition
3), aligning with the ϵ-optimal expert behavior (πϵ(.|.;T ∗)).

In essence, T̂ ∗ represents the dynamics that best fit the
batch data D while also explaining the ϵ-optimal expert be-
havior induced by πϵ(.|.;T ∗).



Algorithm 1: Point estimate T̂ ∗ (ITL)

1: i← 0
2: π(0)(·|s)← π̂ϵ(·|s;T ∗) for s ∈ D
3: π(0)(·|s)← uniform distribution for s /∈ D
4: T (0) ← TMLE

5: T (1) ← solveITL(π
(0), T (0))

6: i← i+ 1
7: while T (i) does not satisfy ϵ-ball property for each s ∈
D do

8: π(i)(·|s)← π̂ϵ(·|s;T ∗) for s ∈ D
9: π(i)(·|s)← π∗(T (i)) for s /∈ D

10: T (i+1) ← solveITL({π(k), T (k)}ik=0)
11: i← i+ 1
12: end while

Bayesian Inverse Transition Learning Based on our
constraints, we have demonstrated how to estimate the dy-
namics such that it aligns with an expert’s behavior. How-
ever, both constraint 1 and constraint 2 (Inequality 8 and
9) lead to an underdetermined problem with infinitely many
solutions. Instead of introducing a loss function as in op-
timization problem (10) and baseline MCE (Herman et al.
2016), we infer a posterior distribution on the true transition
dynamics T ∗ to quantify such uncertainty. This approach
also lets us apply the actual constraints to each sample
directly, instead of approximating them through lineariza-
tion as is done in point estimate setting. We introduce a
sampling-based technique to infer this distribution, denoted
as Pϵ(T

∗|D), assuming data is generated by an ϵ-optimal ex-
pert. We use our constraints to ensure each sample satisfies
the ϵ-ball property for each state s ∈ D.

Naive Approach: Rejection Sampling The complexity
of deriving a posterior from expert trajectories with many
constraints precludes an analytic solution. An initial attempt
might involve drawing samples from the simpler P (T ∗|D)
and rejecting those that fail to meet our constraints. This
turns out to be very inefficient and rejects nearly all sam-
ples.

HMC with Reflection for ITL To enhance sampling ef-
ficiency within our constrained, high-dimensional space, we
employ Hamiltonian Monte Carlo (HMC) with reflection
((Betancourt 2011)) (See 2). A more detailed version of the
algorithm along with more details about inference can be
find in the Algorithm 3 of the Appendix . This method in-
volves transformations necessary for ensuring each sample
lies within the Dirichlet simplex. If samples fail to meet con-
straints 1 & 2 (8, 9) or exit the feasible region after the
leap-frog integration, they are rejected. We start HMC with
the point estimate T̂ ∗ that satisfies the ϵ-ball property (3)
for observed states. This ensures necessary initial feasibil-
ity, leading to a rejection rate of about 20 to 60% using an
adaptive step size, a marked improvement over nearly 100%
rejection in rejection sampling.

Algorithm 2: HMC with reflection for Bayesian ITL

1: First momentum half step
2: m← m− 1

2α∇E(w)
3: for l = 0 to L do
4: Full spatial step
5: w ← w + αm
6: Transform w into T
7: T ← w to T(w)
8: Create π̂ϵ(· | ·;T ∗) with proposed T
9: Squeeze maximum info

10: π ← π∗(T (i))
11: Check for constraints(π) (See )
12: if all constraints(π) satisfied then
13: Full momentum step
14: m← m− α∇E(w)
15: else
16: Bounce
17: constraints(π) c is violated
18: n̂← ∇c(T )/∥∇c(T )∥
19: m← m− 2(m · n̂)n̂
20: end if
21: end for
22: Full spatial step
23: w ← w + αm
24: Last momentum half step
25: m← m− 1

2α∇E(w)

Experimental Setup
Environments Our evaluations span 11 synthetic environ-
ments and a real-life ICU setting. Specifically, we use a 25
states Gridworld with four actions, 10 different 15-states
Randomworld with five actions each, and a healthcare sce-
nario focusing on ICU patients with hypotension, utiliz-
ing the MIMIC-IV dataset (Johnson et al. 2020). In Grid-
world, we generate 100 batches of data D, each consisting
of five episodes with 15 steps each. For each 10 of the Ran-
domworld, 50 batches are generated, each containing three
episodes of ten steps, due to their smaller size. We also eval-
uate our methods across varying ”Coverage %” levels in
these environments, defined as the percentage of states ob-
served within each batch data D and various ϵ values to see
how our method compare to baselines for various degrees of
sub-optimality. Detailed descriptions of both the synthetic
and real-world environments are available in the Appendix.

In synthetic scenarios, we simulate a suboptimal expert,
where approximately 40% of states are stochastic-policy
states (See definition 4), demonstrating the robustness of our
approach to suboptimal expert behavior. We also include in
the Appendix (Table 5, 6, Figure 6 and 7), results for 20%
and 0% (fully optimal expert) of stochastic-policy states
which correspond to lower ϵ values. Note that increased opti-
mality from the expert (lower ϵ values) leads to less stochas-
ticity (ie. less stochastic-policy states) amongst the actions
selected in the batch data D. Our method does not require
the expert to be perfectly optimal and can adapt to various
degrees of optimality through ϵ. In the results below, we use
γ = 0.95 and smoothing parameter defined in Equation 5



δ = 0.001.
Baselines. Our methods, Bayesian Inverse Transition

Learning (BITL) and Inverse Transition Learning (ITL), are
evaluated against TMLE (Maximum Likelihood Estimation,
MLE), TMCE (Maximum Causal Entropy, MCE) (Herman
et al. 2016), and a non-expert-informed posterior P (T ∗|D)
(Posterior Sampling, PS).

Metrics. We use the following metrics to evaluate learnt
dynamics T ′s and induced policies π′s:

Best/ϵ-ball action matching: Proportion of states where
the best/ϵ-good action taken:

1

|S|
∑
s∈S
I{argmax

a
π(a|s) = argmax

a
π∗(a|s)}

/
1

|S|
∑
s∈S
I{argmax

a
π(a|s) ∈ ϵ(s;T ∗)}

Bayesian regret: Regret of a sample-based empirical poste-
rior distribution P̂ (T |D), where |P̂ (T |D)| is number of T’s
in the sample-based distribution:

1

|P̂ (T |D)|2
∑

T∈P̂ (T |D)

∑
T ′∈P̂ (T |D)

Es0∼µ0

[
|V π∗(T )(s0;T )− V π∗(T ′)(s0;T )|

]
We also report the normalized Value, calculated as the ra-

tio of the value achieved by the optimal policy of our learned
dynamics under the true dynamics T ∗ to the expected value
under the true dynamics Es0 [V

∗(s0;T
∗)]. Finally, we re-

port the CVaR of Value over datasets, Total Variation, the
number of our constraints (8, 9) violated, and the training
Time(in seconds) for the baseline MCE and our method ITL.
Value and Best/ϵ-ball action matching metrics are com-
puted both in standard and transfer settings. In this paper, a
transfer task refers to the evaluation of the learned dynamics
and/or policy under a reward function different from the one
used during training. To demonstrate that our learned dy-
namics can adapt to actions not seen in the demonstrations,
we set up a transfer task where the optimal actions under
this new reward function differ from those in the original
task (See Figure 5, 6). This ensures the new task requires
actions we didn’t observe in the initial demonstrations. This
tests the model’s adaptability to changes in task conditions.

Computing the results. For each dynamics T , we com-
pute its optimal policy π∗(T ) using Value Iteration (Sut-
ton and Barto 2018), when needed to compute a metrics
in terms of policies. For posterior distributions P (T |D) and
Pϵ(T |D), we determine the optimal policies of 5,000 sam-
pled T ′s and average them.

How to Tune ϵ: In the healthcare setting, we only have
access to an offline dataset. To select an appropriate ϵ, we
evaluate the performance of ITL on a held-out validation
set. We choose the ϵ that performs best on this validation
set based on the Best/ϵ-ball action matching metric for
both standard and transfer tasks (defined by different reward
functions). As shown in Figure 1, ϵ = 5 appears to be suit-
able, and this value is used for training and computing the

Figure 1: Performance of ITL on a held out validation set
across different ϵ values.

results in the healthcare experiments (See Table 1). We also
present results for ϵ = 10 and ϵ = 15, as these values are
also reasonable. Results for ϵ = 10 and ϵ = 15 are provided
in Tables 7 and 8 in the Appendix, showing similar perfor-
mance.

Results
ITL consistently outperforms baseline methods across
all metrics and coverage settings. Table 4, Table 1 and
Figure 2 show that ITL and BITL outperform other base-
lines across different metrics and coverage levels, in both
synthetic environments and the real-life healthcare environ-
ment. In Randomworlds, BITL and ITL significantly sur-
pass MCE, which outperforms MLE and PS. In Gridworld,
ITL slightly outperforms MCE on average but exhibits sig-
nificantly better worst-case performance. This highlights
the importance of inferring dynamics that satisfy hard con-
straints and the potential of MCE to get stuck in bad local
optima due to gradient-based optimization. ITL also takes
significantly less time to train. BITL outperforms all meth-
ods, showing that modeling uncertainty over dynamics while
leveraging expert demonstrations can help outperform point
estimate methods. In the standard task setting, as Theorem 1
guarantees, ITL and BITL are the only methods converging
to optimal as coverage increases (left column of Figure 2).
They achieve higher values without violating constraints, at-
tributed to enforcing hard constraints in our work versus soft
constraints in MCE.

ITL enables reliable, fast, and data-efficient dynam-
ics estimation. In Gridworld, MCE required significantly
more training time than ITL (137 seconds vs. 1 second)
and showed poorer CVaR values, highlighting the challenges
of gradient optimization in non-convex settings. ITL’s effi-
ciency is also evident in Randomworld, with training times
of 0.70 seconds compared to MCE’s 35 seconds (See Ta-
ble 4). Our methods consistently converge to optimal per-
formance as coverage increases, demonstrating consitency
with expert demonstrations. MCE’s tendency to get trapped
in local optima underscores the efficiency and reliability of
ITL and BITL in complex environments.

The policies from our method stay in the support of



Figure 2: Top row: Normalized Value vs. Coverage for Gridworld (left: Standard Task, middle: Transfer Task), Bottom row:
Normalized Value vs. Coverage for Randomworlds (left: Standard Task, middle: Transfer Task). Rightmost plots: Normalized
Value vs. Bayesian Regret of both Tasks (top: Gridworld, bottom: Randomworlds).

Table 1: Healthcare dataset results environment (ϵ = 5)

Standard Task Transfer Task

Method MLE ITL MCE BITL PS MLE ITL MCE BITL PS

Best matching 0.33 0.51 0.31 0.49 0.31 0.34 0.52 0.32 0.47 0.34
ϵ matching 0.52 1 0.56 1 0.51 0.58 0.97 0.68 0.90 0.58
Nbr Constraints 61 0 47 0 58 - - - - -
Time - 2.23 118 - - - - - - -
Bayesian Regret - - - 2.49 10 - - - 2.80 5.40

Figure 3: Most likely next 3 states after prescribing Intra-
venous treatment in state O2= 1, BP = 1, GCS = 1, Crea = 2

the expert’s actions in every visited state, by imposing
hard constraints leading to better worst case scenarios.
Our methodology enforces hard constraints, ensuring poli-
cies adhere to expert actions in every visited state, thus re-
covering an ϵ-optimal action for each state and minimizing
constraint violations. Unlike MLE, PS, and MCE, which oc-
casionally breach constraints (See Table 4 and Table 1 ) ,
ITL and BITL maintain strict compliance, enhancing relia-
bility. CVaR results in Table 4 show ITL and BITL provide
better worst-case outcomes by enforcing ϵ-ball property on
the estimated dynamics (See Definition 3), preserving policy

robustness, even in challenging scenarios.
Our method integrates efficiently with Bayesian infer-

ence, useful for settings requiring more exploration and
for predicting when we can transfer well Our integration
with Bayesian inference enables us to infer calibrated un-
certainties effectively, leveraging expert knowledge to en-
hance performance, particularly in environments like Grid-
world where exploration avoid repeated suboptimal deci-
sions such as repeatedly colliding with a wall due to poor
action choices. This problem is less pronounced in Random-
world, illustrating the adaptability of our approach to dif-
ferent dynamics. Furthermore, the Bayesian framework al-
lows us to predict with greater accuracy which tasks will
likely yield successful outcomes based on the learned distri-
butions. Looking at the Regrets plots (right column of Fig-
ure 2), we observe a clear correlations between the Bayesian
Regret values and how well we perform on a task. The plot
clearly show higher regret for the transfer task compared to
the standard task which makes sense. In table 1, we show
how similar reasoning can be applied to a real-life dataset
where we see that we clearly perform better on task which
lower regret.

Our method can be used into a continous real-life



healthcare settings and provides insights through coun-
terfactual reasoning. In the healthcare environment, we
discretize the state space based on the following feature val-
ues: Oxygen ratio (O2), Blood pressure (BP), Creatinine
(Crea), and Glasgow Coma Scale (GCS). Details on the dis-
cretization rules are provided in Table 2 of the Appendix.
After prescribing intravenous treatment under the current
state (O2 = 1, BP = 1, GCS = 1, Crea = 2), we examine
the three most likely subsequent states for the MLE, ITL,
and MCE methods. Intravenous treatment is expected to im-
prove blood pressure and creatinine levels. Since clinicians
never prescribed intravenous treatment in this state, MLE re-
sults are uniform across all states and omitted from the plots.
ITL shows that the likelihood of the next states is distributed
among states that either improve blood pressure, creatinine,
or remain the same. In contrast, MCE assigns all its like-
lihood to a single state, which is unrealistic given the com-
plexities of human physiology and the lack of observed tran-
sitions. This example highlights how the MCE framework
can produce unrealistic results in complex real-life settings.
It is important to note that for ITL, the probability of the next
states in Figure 3 is close to uniform quantitatively. This is
due to the fact that we are using a uniform prior and have
not observed any data for that state. However, our method
can rank and hence quantify the uncertainty over the next
states in a more informed way than MLE (which is exactly
uniform) or MCE, which reduces its uncertainty to 0 even
when no data exists for that particular state.

Discussion

Summary We tackled the challenge of estimating transi-
tion dynamics T ∗ from near-optimal expert trajectories in
offline model-based reinforcement learning. Our approach,
Inverse Transition Learning (ITL), leverages the limited cov-
erage of expert trajectories and the near-optimality of the ex-
pert to estimate T ∗. We introduced a novel constraint-based
method and integrated these constraints within a Bayesian
framework to learn a posterior distribution over the dynam-
ics. To our knowledge, this is the first method to combine
posterior estimation of dynamics with expert demonstra-
tions. Our approach significantly enhances decision-making
in both synthetic environments and real-world healthcare
scenarios, such as ICU patient management for hypotension.
It not only improves decision quality but also offers insights
into the likelihood of successful task transfer, showcasing
the robustness and adaptability of our method.

Future Work While our method provides a robust ap-
proach for estimating environmental dynamics using expert
demonstrations, it is currently limited to discrete and fully
observable state spaces. Future research could explore ex-
tending ITL to handle more complex environments, includ-
ing those with high-dimensional, continuous, or partially ob-
servable state spaces. Additionally, combining ITL with In-
verse Reinforcement Learning (IRL) to simultaneously learn
rewards and dynamics represents another promising avenue
for future work.
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Proofs
Theorem 1. If πϵ(.|.;T ∗) = π∗(T ∗) and some dynam-
ics T satisfies constraints(πϵ(.|.;T ∗)) for each state s, then
π∗(T ) = π∗(T ∗). Hence, T will recover the optimal action
a∗ with respect to the true transition dynamics T ∗ for each
state s.

Proof. Since πϵ(.|.;T ∗) = π∗(T ∗), for each state
s: ϵ(s;T ∗) = {a∗} = {π∗(T ∗)(s)}. Hence,
constraints(πϵ(.|.;T ∗)) = constraints(π∗(T ∗)) implies
that for all a′ ∈ A, a′ ̸= a∗, T will satisfies:

Qπ∗(T∗)(s, a∗;T )−Qπ∗(T∗)(s, a′;T ) ≥ ϵ

=⇒ Qπ∗(T∗)(s, a∗;T ) ≥ Qπ∗(T∗)(s, a′;T ),

Thus, the transition dynamics T will favor the same action
a∗ as the true transition dynamics T ∗ for each state s. So
if we attempt policy improvement on Qπ∗(T∗)(s, .;T ), we
will end up with the same policy π∗(T ∗), meaning π∗(T ) =
π∗(T ∗) is the optimal policy for dynamics T .

Lemma 1. For any ϵ, if T satisfies constraints(π∗(T )), then
T will satisfies the ϵ-ball property.

Proof. For each state s, Constraint 1(π∗(T )) and Theo-
rem 1 imply π∗(T )(s) ∈ ϵ(s;T ∗) because Q∗(s, a;T ) is
greater than Q∗(s, a′;T ) + ϵ for all a ∈ ϵ(s;T ∗) and a′ /∈
ϵ(s;T ∗). This ensures that every invalid action is ϵ-away
from every valid action under the dynamics T . Additionally,
Constraint 2(π∗(T )) guarantees that ϵ(s;T ∗) = ϵ(s;T )
by ensuring that for each valid action a ∈ ϵ(s;T ∗), the
maxa′ Q∗(s, a′;T ) − Q∗(s, a;T ) ≤ ϵ. This completes the
proof that the dynamics T satisfy the ϵ-ball property.

Non-Convex Feasible Region
When plotting our constraints (equations 8 and 9) within a
three-dimensional subspace of a toy example, as illustrated
in Figure 4, it becomes apparent that the feasible region
can be non-convex, primarily due to the inverse operations
within the constraints.

Inference Details
HMC for Dirichlet
The log-likelihood function of the target distribution takes
the following form:

logP (T ∗|D) =
∑
s,a

Dir(Ns,a + δ|s, a) (11)

Applying HMC to Dirichlet distributions is challenging
due to the constrained nature of these distributions, which
can hinder the efficiency of standard HMC methods. To ad-
dress these issues, (Betancourt 2012) introduce a set of in-
vertible transformations that reshape the Dirichlet distribu-
tion into a more tractable form by removing the simplex
constraints of the original Dirichlet. To make our sampling
more efficient in high dimensional settings, we add a logit
transformation to remove the need of the Dirichlet variables

Figure 4: Example of a subspace of the feasible region de-
fined by the constraints on T . The label ’tsas” indicates the
probability of transitioning to state s′ after being in state s
and taking action a.

to be in between 0 and 1. We will refer as w as the vari-
able obtained after applying all of these transformations on
a transition dynamics T . Since all of the transformations are
invertible we can easily go from one variable to the other.
Algorithm 2 summarize how to sample from Pϵ(T

∗|D). We
based our algorithm based on the first order leapfrog with
constraint HMC algorithm of (Betancourt 2011).

HMC for Dirichlet with Reflection
Notation
• m: The momentum variable, representing the current

momentum.
• w: The position variable, denoting the current position.
• T : Corresponding transition dynamics of the position

variable w

• α: The step size parameter, which determines the scale
of each discrete step in the leapfrog integration.

• ∇E(w): The gradient of the energy function at position
w, used to compute the force in the Hamiltonian dynam-
ics.

• C(T ): All the constraints function that ensures the tra-
jectory remains within the valid region defined by our
constraints in terms of the dynamics T .

• L: The total number of integration steps to be performed
in the leapfrog algorithm.

• l: An index variable representing the current time step
within the loop of the leapfrog integration.

• w to T Transform variable w into variable T. (See (Be-
tancourt 2012) )

• T to w Transform variable T into variable w. (See (Be-
tancourt 2012) )



Note that if after the final leap frog step, the current transi-
tion dynamics T does not satisfy constraints(π∗(T )) or the
leap frog integration terminates outside the feasible region,
it is immediately rejected. This ensures that each sample sat-
isfies the ϵ-ball property for each state s ∈ D. Such “clean-
up step” step is needed in case the leap frog integration stop
when the position vector is outside of the constraints and did
not have time to “roll-back” into the feasible region.

Algorithm 3: HMC with reflection for Bayesian ITL

1: First momentum half step
2: m← m− 1

2α∇E(w)
3: for l = 0 to L do
4: Full spatial step
5: w ← w + αm
6: Transform w into T
7: T ← w to T(w)
8: Create π̂ϵ(· | ·;T ∗) with proposed T
9: Squeeze maximum info

10: π ← π∗(T (i))
11: Check for constraints(π) (See )
12: if all constraints(π) satisfied then
13: Full momentum step
14: m← m− α∇E(w)
15: else
16: Bounce
17: constraints(π) c is violated
18: n̂← ∇c(T )/∥∇c(T )∥
19: m← m− 2(m · n̂)n̂
20: end if
21: end for
22: Full spatial step
23: w ← w + αm
24: Last momentum half step
25: m← m− 1

2α∇E(w)

Synthetic Environments
Gridworld Environment
The Gridworld environment is structured as follows:

• Grid Size: The world is a grid consisting of 5 × 5 tiles,
resulting in a total of 25 distinct states.

• Actions: At each state, an agent can choose from four
possible actions: move right, move up, move left, or
move down.

• Initial State: The agent always starts from the bottom
left corner of the grid, which is designated as the initial
state.

• Goal State: The objective for the agent is to reach the
goal state, located at the top right corner of the grid.

• Dynamics:

– Intended Actions: When the agent selects an action,
there is an 80% chance that it will move deterministi-
cally to the intended adjacent state.

– Slipping: There is a 20% chance that the agent will
slip, leading to a non-deterministic outcome. In such
cases, the agent might end up in any one of the four
neighboring tiles (right, left, up, down) of the intended
state.

– Wall Interactions: If an action would result in the
agent moving into a wall (the edge of the grid), the
agent remains in its current state. This mechanic en-
sures that the agent does not leave the confines of the
grid.

The definition of the reward R in the grid world environ-
ment is structured as follows:

• Soft-Wall Penalty: If the agent attempts to move across
a tile designated as a soft-wall, it incurs a penalty of −5
reward points for each attempt. This mechanic discour-
ages the agent from crossing these specific tiles.

• Movement Penalty: For every other tile that the agent
moves through, it receives a minor penalty of −0.1 re-
ward points. This encourages the agent to find the short-
est possible path to the goal.

• Goal Reward: Upon successfully reaching the goal state,
the agent is awarded +10 reward points. This substantial
reward signifies the completion of the episode and serves
as the primary incentive for the agent to navigate the grid
efficiently.

Reward function of Gridworld

Figure 5: Visualization of the grid world environment. Each
square in the 5x5 grid represents a unique state, colored
based on the associated reward. The ’soft-wall’ tiles are dis-
tinctively colored to represent a reward of -5. Red arrows on
each tile indicate the direction of the optimal policy from
that state, leading towards the goal state at the top right cor-
ner, which is marked in a different color and has a reward
of 10. The starting point is at the bottom left corner, from
where the arrows guide the optimal path through the grid.



This reward structure is designed to balance the objective
of reaching the goal state as quickly as possible with the
challenge of navigating around soft-wall tiles. The penalties
for unnecessary movements and soft-wall crossings ensure
that the agent must carefully consider each action, while
the reward for reaching the goal state motivates the agent
to complete its objective efficiently. Figure 5 shows the grid
world environment, showcasing both the rewards for each
state and the optimal policy indicated by red arrows. This
environment presents a challenge for an agent to learn the
most efficient path from the initial state to the goal state, tak-
ing into account the probabilistic nature of movement due to
slipping. The deterministic and non-deterministic outcomes
necessitate strategic planning and adaptability in the agent’s
approach to navigating the grid.

Transfer Task In the transfer task, we preserve the struc-
ture of the original grid world environment, with no alter-
ations to the state space or action set. However, we intro-
duce a significant change to the reward function: the loca-
tion of the soft-wall is shifted, thereby altering the reward
landscape. This modification necessitates the derivation of
a new optimal policy that accounts for the updated rewards
and navigates the agent from the initial state to the goal state
via a different path. See Figure 6.

Reward function of Gridworld in Transfer Task

Figure 6: The grid world environment after the transfer task
modification. The soft-wall tiles, previously located, have
been repositioned, visibly changing the reward distribution
across the grid. As a result, the optimal policy, indicated by
red arrows, now follows a novel route that adapts to the new
reward structure, aiming to minimize penalties and maxi-
mize returns en route to the goal state at the top right corner.

The updated reward function is defined identically to the
original environment, with soft-wall tiles incurring a penalty
of −5 reward points, other tiles a penalty of −0.1 points,
and a reward of +10 points assigned upon reaching the goal

state. The shift in the soft-wall location directly affects the
agent’s trajectory, demonstrating the agent’s ability to adjust
its policy in response to changes in environmental dynamics.
This transfer task effectively evaluates the flexibility and ro-
bustness of the learned policy.

Randomworld Environment
We introduce the RandomWorld environment (inspired by
(Jiang et al. 2015)), which is designed to evaluate the per-
formance of reinforcement learning algorithms under con-
ditions of high uncertainty and stochasticity. The Random-
World environment is characterized by the following prop-
erties:

• State Space: The environment comprises 15 distinct
states.

• State Space: The environment comprises 5 distinct ac-
tions.

• Dynamics : For each state-action pair, 5 successor states
are chosen at random to have nonzero transition proba-
bility. These probabilities are drawn independently from
Uniform[0, 1] and normalized to sum to one.

• Initial State Distribution: The initial state for each
episode is selected with uniform probability across all 15
states.

• Absence of a Goal State: RandomWorld is devoid of a
specified goal state, thus simulating scenarios where an
agent’s exploration is continuous and without a predeter-
mined endpoint.

• Reward Function: Rewards are assigned randomly yet
structured such that state 1 yields the highest expected
reward, and state 15 the lowest. Specifically, the reward
for state s, R(s), is uniformly distributed within the in-
terval [16− s− 1, 16− s], aligning with the descending
order of state desirability.

The inherent randomness in state transitions and rewards
within RandomWorld poses a significant challenge to rein-
forcement learning strategies, necessitating the development
of policies that are robust to uncertainty and variability in
environmental dynamics.

Transfer Task In the RandomWorld environment’s trans-
fer task, we introduce a modification to the reward func-
tion while preserving all other environmental characteris-
tics. This adjustment is aimed at assessing the adaptability
of reinforcement learning algorithms when confronted with
a new reward paradigm. The specifics of the transfer task are
as follows:

• Inverted Reward Structure: We reverse the ranking of
state desirability; state 1 is now the least desirable state,
and state 15 is the most desirable.

• Random Reward Generation: The reward for state s in
the transfer task, Rtransfer(s), is determined by a random
draw from a uniform distribution over the range [s−1, s],
thus ensuring that higher state numbers correspond to
higher expected rewards.



This reversal in the reward hierarchy necessitates that the
agent recalibrates its policy to align with the new set of re-
wards. It provides an insightful measure of the algorithm’s
capacity to adapt to drastic changes in the reward structure
within a stochastic environment.

Generating batch data D
A critical component of our experiments in offline reinforce-
ment learning is the generation of a batch data D, which is
constructed based on a predefined coverage percentage of
the state space and a given ϵ, measuring the degree of opti-
mality of the expert πϵ(.|.;T ∗) with respect to the true un-
known dynamics T ∗. The batch data D is created through
the following procedure:
1. State Selection: We randomly select a certain percentage

of the total states, corresponding to the coverage param-
eter, to include in our batch data.

2. Action Selection: For each state s included in our se-
lection, we identify actions in the ϵ-ball ϵ(s;T ∗), with
respect to the ϵ-optimal expert πϵ(.|.;T ∗).

3. Transition Sampling: We sample K transitions for each
state-action pair (s, a) from the true dynamics T ∗.

4. Dataset Construction: The batch datasetD is comprised
of the transitions collected, each represented as a tuple
(s, a, s′), with s as the state, a as the action, s′ as the
next state.

In our experimental setup, we define the value of K,
which dictates the number of transitions sampled for each
state-action pair that aligns with the ϵ-optimal expert policy
πϵ(.|.;T ∗). For the Gridworld environment, we set K = 10 ,
acknowledging the larger state space and the need for a com-
prehensive dataset that encapsulates the dynamics around
the optimal policy. In contrast, for RandomWorld, we set
K = 5, suitable for its smaller size and complexity.

Averaging Procedure for Experimental Results
To achieve statistical rigor in our experiments, we average
our results over multiple independently generated datasets
for both Gridworld and RandomWorld environments:
• Gridworld: We generate 50 independent batch datasets

for the Gridworld environment. The experimental results
for each dataset are recorded, and the final result is ob-
tained by averaging these outcomes.

• RandomWorld: For the RandomWorld environment, we
create 20 independent instances of the environment. Each
of these RandomWorld instances is accompanied by 5
independently generated batch datasets, leading to a to-
tal of 100 unique datasets (20 worlds multiplied by 5
datasets each). The experimental outcomes across these
datasets are compiled, and their average is computed to
determine the overall performance in the RandomWorld
environment.

This methodology, involving the independent generation
of each dataset and each world instance, provides a compre-
hensive and unbiased evaluation of the algorithms, ensuring
that our results are not influenced by any specific configura-
tion or sample of the environment.

Real-life ICU Environment
Following the experiments within a synthetic environments,
we now transition to the evaluation of our methodology in
a real-world scenario. To this end, we selected the Medical
Information Mart for Intensive Care IV (MIMIC-IV) dataset
as our experimental field. This dataset offers a rich, diverse,
and challenging setting for testing our method, especially
given its potential to contribute to advancements in health-
care analytics and patient care strategies.

About MIMIC-IV Dataset
The MIMIC-IV dataset, developed by the MIT Lab for Com-
putational Physiology and publicly available, aggregates a
vast range of anonymized health data from critical care units
at Beth Israel Deaconess Medical Center in Boston. Cov-
ering over a decade’s worth of patient admissions, it pro-
vides detailed records on demographics, vital signs, lab tests,
medications, and more, establishing itself as a critical re-
source for healthcare model development. Its comprehensive
scope spans all patient care aspects, enabling the creation of
holistic models for predicting diverse patient outcomes. The
dataset’s richness lies in its variety, covering over 40,000 pa-
tients of different ages, ethnicities, and conditions, and its
granularity, offering high-resolution data points and time-
stamped records, which are essential for developing precise,
dynamic healthcare models. Moreover, MIMIC-IV’s public
accessibility fosters a global research community’s collabo-
ration, enhancing healthcare analytics advancements.

Utilizing the MIMIC-IV dataset, we showcase out the
learning applicability of our method in real-world health-
care, to get valuable insights from the data in such a compli-
cated environemnt.

Data Preprocessing for Hypotension Analysis
In our investigation into hypotension within ICU settings,
we tailored our preprocessing steps to exclusively include
patients affected by this condition. Our methodology com-
menced with the application of specific filters on the
MIMIC-IV dataset to accurately identify the patient cohort
of interest. These filters were designed to capture adults aged
18 to 80 years, who had ICU stays of a minimum duration
of 24 hours, and exhibited Mean Arterial Pressure (MAP)
readings of 65mmHg or below, indicative of acute hypoten-
sion.

The analytical framework of our study is built around
a carefully selected set of five clinical variables that con-
stitute the state space, namely: creatinine levels ((Crea)),
Glasgow Coma Scale score ((GCS)), mean blood pressure
((BP)), and the ration of partial pressure of oxygen,
over fraction of inspired oxygen ((O2)). The ac-
tion space encompasses two primary treatment
modalities: intravenous (IV) fluid bolus therapy and
vasopressor therapy. This precise filtering approach yielded
a dataset comprising 1,684 distinct ICU admissions,
from which we derived approximately 100,000 tuples
(state, action, next state) ∈ D. This dataset serves as the
foundation to evaluate our method and the baselines.



State Space Construction
The state space for our model is constructed by discretiz-
ing five key clinical variables extracted from the MIMIC-
IV dataset: partial pressure of oxygen, fraction of inspired
oxygen, mean blood pressure, Glasgow Coma Scale (GCS),
and creatinine levels. Discretization involves binning these
variables into distinct categories based on clinically relevant
thresholds, as follows:

Based on the binning schema presented, the state space
comprises all possible combinations of these bins, leading
to a total of 3 × 3 × 2 × 2 = 36 unique states. This struc-
ture effectively captures diverse clinical scenarios within a
manageable framework for analyzing the dynamics of hy-
potension treatment. To illustrate the discretization process
and the resultant bin mapping, consider a hypothetical pa-
tient data point with the following clinical variable values:

• Partial Pressure of Oxygen / Fraction Inspired Oxygen:
150

• Mean Blood Pressure: 65 mmHg
• Glasgow Coma Scale: 10
• Creatinine: 5 mg/dL

Based on the discretization schema provided in Table 2,
this patient data point would be mapped to the following
bins:

• Partial Pressure of Oxygen / Fraction Inspired Oxygen
(150): Bin 1 (since 100 ≤ 150 < 200)

• Mean Blood Pressure (65 mmHg): Bin 1 (since 65 < 70
mmHg)

• Glasgow Coma Scale (GCS) (15): Bin 0 (since 10 ≤ 12)
• Creatinine (2.5 mg/dL): Bin 2 (since 5 ≥ 4.9)

Thus, the tuple (150, 65, 15, 2.5) would be mapped to
the discretized state (1, 1, 0, 2) according to our binning
process. This discretization approach allows us to capture
a comprehensive yet manageable representation of the pa-
tient’s clinical status, facilitating the application of our of-
fline reinforcement learning model to infer the unknown dy-
namics T ∗.

Action Space Definition
The action space in our model encapsulates the range of pos-
sible treatments administered to patients suffering from hy-
potension. It consists of four discrete actions, each repre-
senting a specific treatment strategy. The actions are enu-
merated as follows:

Each action is designed to reflect the clinical decisions
made in the intensive care unit for managing patients’ blood
pressure levels. Action 0 (no treatment) represents a con-
servative approach, where no immediate intervention is ap-
plied. Action 1 (vasopressor therapy) and Action 2 (IV fluid
bolus) correspond to the administration of specific treat-
ments aimed at increasing blood pressure.

Reward Function Definition
The reward function, R(s), quantifies the desirability of each
state x = (s1, s2, s3, s4) based on the bin values correspond-
ing to the discretized clinical variables (each si correspond

to a bin number). Formally, the reward function is defined
as:

R(s) = 60− 10× (s1 + s2 + s4)

This formulation encapsulates our intuition that higher
bin values for any of the clinical variables signify a dete-
rioration in the patient’s condition, indicating more severe
or dangerous vital signs. Consequently, the reward decreases
linearly by a factor of 10 for each increment in the bin values
of the state components. The choice of this linear penalty en-
sures a straightforward interpretation of the state’s severity,
with a base reward of 60 being adjusted downward based on
the sum of the bin values in the state.

While this reward function offers a reasonable approx-
imation for assessing the clinical states in the context of
hypotension, it is important to acknowledge that other for-
mulations could be equally valid. The essential criterion for
any chosen reward function is its ability to accurately differ-
entiate between clinically favorable and unfavorable states,
thereby guiding the reinforcement learning model towards
optimizing treatment strategies that mitigate the risks asso-
ciated with hypotension.

Transfer Task and Modified Reward Function
We introduce a transfer task to evaluate the model’s adapt-
ability and performance under a different reward function
and keeping evrything else identical. The modified reward
function for the transfer task is defined as:

Rtransfer(s) = 60− 10× (s2 + s4)

This adjustment means that the reward now decreases
quadratically, rather than linearly, with the values of the fea-
tures within each state s = (s1, s2, s3, s4). The quadratic
penalty intensifies the impact of higher bin values, more ag-
gressively penalizing states indicative of worsening patient
conditions. This change aims to test the method’s sensitiv-
ity and response to more severe deteriorations in the clinical
variables, pushing the reinforcement learning algorithm to
prioritize avoiding high-risk states with even greater empha-
sis. Such a modification in the reward function’s structure
is pivotal for assessing the robustness and flexibility of our
method. It allows us to explore how different reward for-
mulations can influence decision-making strategies in the
context of medical treatment optimization, particularly un-
der scenarios with escalating risks.

Construction of the ϵ-Optimal Expert Policy πϵ
In the absence of explicit knowledge about the true dy-
namics T ∗ governing the environment, our methodology
for obtaining an estimate of the ϵ-optimal expert policy,
π̂ϵ(·|·;T ∗), leverages the historical batch data D collected
from the ICU. We define an action a to be valid for a state s
if and only if action a was executed in at least 5% of the in-
stances where state s was observed in D. Actions not meet-
ing this criterion are considered invalid for the state, reflect-
ing an approach that filters actions based on their historical
prevalence and relevance to specific states.

Leveraging domain knowledge within the critical care do-
main, we set the ϵ parameter to 5 for our experiments. This



Table 2: Discretization of Clinical Variables into Bins

Abbrev Clinical Variable Threshold Bin
Value

O2 Partial Pressure of Oxygen / Fraction Inspired Oxygen ≥ 200 0
O2 Partial Pressure of Oxygen / Fraction Inspired Oxygen < 200 and ≥ 100 1
O2 Partial Pressure of Oxygen / Fraction Inspired Oxygen < 100 2
BP Mean Blood Pressure ≥ 70 mmHg 0
BP Mean Blood Pressure < 70 mmHg 1
GCS Glasgow Coma Scale (GCS) ≤ 12 0
GCS Glasgow Coma Scale (GCS) > 14 1
Crea Creatinine ≤ 1.9 mg/dL 0
Crea Creatinine > 1.9 and ≤ 4.9 mg/dL 1
Crea Creatinine > 4.9 mg/dL 2

Action Description
0 No treatment administered
1 Vasopressor therapy administered
2 Intravenous (IV) fluid bolus administered
3 Both vasopressor therapy and IV fluid bolus

Table 3: Definition of Actions in the Treatment Strategy Space

parameter choice reflects a balance, aiming to capture the
degree of optimality in the actions taken by medical profes-
sionals in the ICU, under the assumption that the most fre-
quently taken actions represent a near-optimal strategy given
the complex dynamics and uncertainties inherent in patient
care. Our experimental results demonstrate non-significant
changes across various ϵ values, suggesting that the selected
ϵ-optimal policy robustly encapsulates the expert behavior
within the dataset, without significant sensitivity to the ex-
act ϵ threshold.

Results
We include in this section the full set of results for the syn-
thetic worlds where we include expert with various degree
of optimality leading to 20% and 0% of stochastic-policy
states) as well as multiple ϵ values as well for the results
with the real healthcare dataset.



Figure 7: (40% stochastic-policy states) Top row: Normalized Value vs. Coverage for Gridworld (left: Standard Task, middle:
Transfer Task), Bottom row: Normalized Value vs. Coverage for Randomworlds (left: Standard Task, middle: Transfer Task).
Rightmost plots: Normalized Value vs. Bayesian Regret of both Tasks (top: Gridworld, bottom: Randomworlds).

Table 4: Gridworld and Randomworlds Results (40% stochastic-policy states)

Gridworld

Method MCE BITL ITL MLE PS

ϵ matching 0.65 ± 0.12 0.78 ± 0.08 0.65 ± 0.12 0.37 ± 0.06 0.38 ± 0.02
ϵ matching transfer 0.5 ± 0.11 0.64 ± 0.08 0.51 ± 0.11 0.39 ± 0.07 0.39 ± 0.02
Best matching 0.55 ± 0.11 0.64 ± 0.08 0.56 ± 0.11 0.31 ± 0.06 0.29 ± 0.02
Best matching transfer 0.45 ± 0.1 0.54 ± 0.08 0.45 ± 0.11 0.34 ± 0.07 0.31 ± 0.02
Time 117.47 ± 26.34 - 0.32 ± 0.26 - -
Total Variation 137.62 ± 4.39 159.36 ± 3.98 137.05 ± 4.32 141.37 ± 3.8 160.05 ± 4.43
Value CVaR 1% 56.05 ± 15.08 104.64 ± 5.43 103.87 ± 15.67 -5.34 ± 0.54 -4.33 ± 1.68
Value CVaR 2% 76.7 ± 17.51 107.36 ± 5.19 106.46 ± 12.51 -5.18 ± 0.51 -3.49 ± 1.56
Value CVaR 5% 108.76 ± 26.54 109.04 ± 4.26 109.7 ± 9.01 -4.71 ± 0.47 -2.35 ± 1.35
Nbr constraints violated 3.06 ± 3.68 0.0 ± 0.0 0.0 ± 0.0 23.13 ± 6.59 16.37 ± 3.21

Randomworlds

Method MCE BITL ITL MLE PS

ϵ matching 0.54 ± 0.12 0.75 ± 0.12 0.76 ± 0.13 0.43 ± 0.11 0.3 ± 0.05
ϵ matching transfer 0.46 ± 0.12 0.38 ± 0.1 0.5 ± 0.13 0.46 ± 0.12 0.31 ± 0.05
Best matching 0.38 ± 0.13 0.57 ± 0.12 0.58 ± 0.15 0.29 ± 0.11 0.19 ± 0.05
Best matching transfer 0.34 ± 0.13 0.26 ± 0.09 0.37 ± 0.15 0.34 ± 0.13 0.2 ± 0.05
Time 36.61 ± 26.36 - 0.65 ± 0.39 - -
Total Variation 111.08 ± 2.42 123.3 ± 4.06 102.02 ± 4.84 111.07 ± 2.3 127.02 ± 2.66
Value CVaR 1% -522.35 ± 5.49 -423.21 ± 29.84 -404.02 ± 0.13 -525.94 ± 3.86 -452.19 ± 22.88
Value CVaR 2% -514.69 ± 7.06 -398.25 ± 30.3 -397.26 ± 5.34 -519.63 ± 6.42 -444.69 ± 20.16
Value CVaR 5% -459.71 ± 23.48 -364.34 ± 34.06 -366.43 ± 16.03 -481.98 ± 23.31 -434.24 ± 17.22
Nbr constraints violated 11.81 ± 6.47 0.0 ± 0.0 0.0 ± 0.0 17.23 ± 6.75 11.66 ± 3.12



Figure 8: (20% stochastic-policy states) Top row: Normalized Value vs. Coverage for Gridworld (left: Standard Task, middle:
Transfer Task), Bottom row: Normalized Value vs. Coverage for Randomworlds (left: Standard Task, middle: Transfer Task).
Rightmost plots: Normalized Value vs. Bayesian Regret of both Tasks (top: Gridworld, bottom: Randomworlds).

Table 5: Comparison of Gridworld and Randomworlds (20% stochastic-policy states)

Gridworld

Method MCE BITL ITL MLE PS

ϵ matching 0.64 ± 0.11 0.74 ± 0.08 0.64 ± 0.1 0.37 ± 0.06 0.32 ± 0.01
ϵ matching transfer 0.41 ± 0.06 0.51 ± 0.05 0.4 ± 0.06 0.32 ± 0.04 0.32 ± 0.01
Best matching 0.59 ± 0.11 0.69 ± 0.08 0.6 ± 0.1 0.34 ± 0.06 0.29 ± 0.02
Best matching transfer 0.4 ± 0.06 0.5 ± 0.05 0.39 ± 0.06 0.3 ± 0.04 0.31 ± 0.02
Time 114.66 ± 27.54 - 0.75 ± 0.53 - -
Total Variation 137.81 ± 3.79 160.22 ± 3.89 138.71 ± 3.5 141.67 ± 3.11 160.4 ± 3.62
Value CVaR 1% 17.94 ± 7.28 103.22 ± 7.96 102.83 ± 33.76 -5.23 ± 0.56 -3.49 ± 0.56
Value CVaR 2% 54.96 ± 16.37 106.6 ± 7.27 104.7 ± 25.52 -5.04 ± 0.57 -2.9 ± 0.63
Value CVaR 5% 106.58 ± 42.1 109.18 ± 5.81 107.58 ± 16.89 -4.74 ± 0.5 -1.65 ± 0.92
Nbr constraints violated 0.82 ± 2.53 0.0 ± 0.0 0.0 ± 0.0 20.6 ± 5.73 14.19 ± 2.53

Randomworlds

Method MCE BITL ITL MLE PS

ϵ matching 0.5 ± 0.13 0.72 ± 0.13 0.73 ± 0.15 0.38 ± 0.13 0.24 ± 0.05
ϵ matching transfer 0.42 ± 0.12 0.34 ± 0.11 0.47 ± 0.13 0.42 ± 0.12 0.25 ± 0.05
Best matching 0.45 ± 0.12 0.66 ± 0.13 0.68 ± 0.15 0.34 ± 0.12 0.21 ± 0.05
Best matching transfer 0.39 ± 0.13 0.31 ± 0.1 0.43 ± 0.14 0.39 ± 0.13 0.22 ± 0.05
Time 31.96 ± 25.36 - 0.68 ± 0.69 - -
Total Variation 112.12 ± 2.43 124.38 ± 4.55 103.32 ± 4.91 112.07 ± 2.23 128.34 ± 2.51
Value CVaR 1% -520.09 ± 1.89 -401.79 ± 23.07 -408.13 ± 0.14 -523.71 ± 1.51 -428.06 ± 0.79
Value CVaR 2% -519.89 ± 1.72 -388.77 ± 29.86 -396.53 ± 5.59 -520.58 ± 1.96 -426.44 ± 1.25
Value CVaR 5% -450.23 ± 25.6 -356.37 ± 33.32 -352.47 ± 21.57 -451.59 ± 23.83 -421.73 ± 2.52
Nbr constraints violated 7.03 ± 3.94 0.0 ± 0.0 0.0 ± 0.0 9.5 ± 3.95 9.22 ± 2.52



Figure 9: (0% stochastic-policy states) Top row: Normalized Value vs. Coverage for Gridworld (left: Standard Task, middle:
Transfer Task), Bottom row: Normalized Value vs. Coverage for Randomworlds (left: Standard Task, middle: Transfer Task).
Rightmost plots: Normalized Value vs. Bayesian Regret of both Tasks (top: Gridworld, bottom: Randomworlds).

Table 6: Comparison of Gridworld and Randomworlds (0% stochastic-policy states)

Gridworld

Method MCE BITL ITL MLE PS

ϵ matching 0.68 ± 0.09 0.75 ± 0.07 0.68 ± 0.09 0.37 ± 0.06 0.29 ± 0.01
ϵ matching transfer 0.4 ± 0.06 0.49 ± 0.05 0.38 ± 0.06 0.29 ± 0.04 0.31 ± 0.01
Best matching 0.68 ± 0.09 0.75 ± 0.07 0.68 ± 0.09 0.37 ± 0.06 0.29 ± 0.01
Best matching transfer 0.4 ± 0.06 0.49 ± 0.05 0.38 ± 0.06 0.29 ± 0.04 0.31 ± 0.01
Time 119.86 ± 22.01 - 4.36 ± 1.46 - -
Total Variation 137.38 ± 3.3 158.41 ± 3.37 138.6 ± 3.06 141.52 ± 2.55 160.22 ± 2.95
Value CVaR 1% 75.34 ± 19.3 104.24 ± 7.94 104.24 ± 37.65 -5.23 ± 0.48 -4.11 ± 0.22
Value CVaR 2% 102.59 ± 21.97 108.18 ± 6.74 105.64 ± 26.95 -5.2 ± 0.43 -3.65 ± 0.34
Value CVaR 5% 106.74 ± 23.68 110.83 ± 5.93 108.95 ± 18.49 -4.94 ± 0.35 -1.88 ± 0.84
Nbr constraints violated 0.08 ± 0.59 0.0 ± 0.0 0.0 ± 0.0 22.4 ± 5.23 13.15 ± 1.83

Randomworlds

Method MCE BITL ITL MLE PS

ϵ matching 0.46 ± 0.13 0.77 ± 0.14 0.78 ± 0.15 0.32 ± 0.13 0.19 ± 0.05
ϵ matching transfer 0.37 ± 0.14 0.34 ± 0.13 0.39 ± 0.16 0.36 ± 0.15 0.23 ± 0.05
Best matching 0.46 ± 0.13 0.77 ± 0.14 0.78 ± 0.15 0.32 ± 0.13 0.19 ± 0.05
Best matching transfer 0.37 ± 0.14 0.34 ± 0.13 0.39 ± 0.16 0.36 ± 0.15 0.23 ± 0.05
Time 32.11 ± 27.16 - 0.91 ± 0.55 - -
Total Variation 111.47 ± 2.27 117.66 ± 11.76 101.44 ± 2.87 111.84 ± 2.26 128.14 ± 2.54
Value CVaR 1% -520.09 ± 3.18 -343.11 ± 0.56 -350.2 ± 11.25 -521.78 ± 0.0 -428.28 ± 0.05
Value CVaR 2% -517.71 ± 2.71 -278.91 ± 36.29 -343.9 ± 20.59 -520.09 ± 2.39 -427.96 ± 0.4
Value CVaR 5% -446.29 ± 4.08 -246.36 ± 41.54 -254.84 ± 47.72 -447.26 ± 3.11 -425.21 ± 1.24
Nbr constraints violated 4.9 ± 1.71 0.0 ± 0.0 0.0 ± 0.0 6.9 ± 1.91 8.59 ± 2.03



Table 7: Healthcare dataset results (ϵ = 10)

Standard Task Transfer Task

Method MLE ITL MCE BITL PS MLE ITL MCE BITL PS

Best matching 0.33 0.47 0.38 0.46 0.31 0.34 0.50 0.10 0.47 0.34
ϵ matching 0.52 1 0.68 1 0.51 0.58 0.94 0.16 0.94 0.58
Nbr Constraints 49 0 43 0 52 - - - - -
Time - 2.31 180 - - - - - - -
Bayesian Regret - - - 0.55 10 - - - 0.44 5.40

Table 8: Healthcare dataset results (ϵ = 15)

Standard Task Transfer Task

Method MLE ITL MCE BITL PS MLE ITL MCE BITL PS

Best matching 0.33 0.48 0.25 0.49 0.31 0.34 0.47 0.15 0.47 0.34
ϵ matching 0.52 1 0.43 1 0.51 0.58 0.97 0.31 0.97 0.58
Nbr Constraints 49 0 51 0 52 - - - - -
Time - 1.78 94 - - - - - - -
Bayesian Regret - - - 1.02 10 - - - 0.56 5.40


